Any method to remove unwanted space in grammar rule? - antlr

I am trying to add a special type of function to my antlr grammar called Window function. My Grammar looks something like this :
stat: expression;
equation: expression relop expression;
expression:
multiplyingExpression ((PLUS | MINUS) multiplyingExpression)*;
multiplyingExpression:
powExpression ((TIMES | DIV) powExpression)*;
powExpression: signedAtom (POW signedAtom)?;
signedAtom:
PLUS signedAtom
| MINUS signedAtom
| winfunc
| func
| iffunc
| atom;
atom:
scientific
| string_literal
| id
| constant
| LPAREN expression RPAREN;
string_literal: STRING;
scientific: SCIENTIFIC_NUMBER;
constant: PI | EULER | I;
variable: VARIABLE;
func: funcname LPAREN expression (COMMA expression)* RPAREN;
iffunc:
'if' LPAREN equation COMMA expression COMMA expression RPAREN;
funcname: variable;
relop: EQ | GT | LT;
LPAREN: '(';
RPAREN: ')';
PLUS: '+';
MINUS: '-';
TIMES: '*';
DIV: '/';
GT: '>';
LT: '<';
EQ: '==';
COMMA: ',';
POINT: '.';
POW: '^';
id: '[' idx ']' {console.log($idx.text);};
idx:
{(this.antlrHelper.isMetric(this.getCurrentToken().text))}? metricid
| {(this.antlrHelper.isDimension(this.getCurrentToken().text))}? entityid
| unknownid;
// metricid | entityid | unknownid;
metricid: VARIABLE;
entityid: VARIABLE;
unknownid: VARIABLE;
VARIABLE: VALID_ID_START VALID_ID_CHAR*;
fragment VALID_ID_START: ('a' .. 'z') | ('A' .. 'Z') | '_';
fragment VALID_ID_CHAR: VALID_ID_START | ('0' .. '9') | '.';
SCIENTIFIC_NUMBER: NUMBER ((E1 | E2) SIGN? NUMBER)?;
fragment NUMBER: ('0' .. '9')+ ('.' ('0' .. '9')+)?;
fragment E1: 'E';
fragment E2: 'e';
fragment SIGN: ('+' | '-');
STRING: '"' StringCharacters? '"';
fragment StringCharacters: StringCharacter+;
fragment StringCharacter: ~["\\] | EscapeSequence;
// §3.10.6 Escape Sequences for Character and String Literals
fragment EscapeSequence: '\\' [btnfr"'\\] | OctalEscape;
fragment OctalEscape:
'\\' OctalDigit
| '\\' OctalDigit OctalDigit
| '\\' ZeroToThree OctalDigit OctalDigit;
fragment ZeroToThree: [0-3];
fragment OctalDigit: [0-7];
WS: [ \r\n\t]+ -> skip;
It is taking normal functions. For windows function, I've added following rule :
winfunc:
WINDOW winfuncname LPAREN winMetricId COMMA scientific COMMA scientific RPAREN;
WINDOW: 'Window_';
winfuncname:
variable;
winMetricId: '[' winMetricIdx ']';
winMetricIdx:
{(this.antlrHelper.isMetric(this.getCurrentToken().text))}? metricid
| otherid;
otherid: VARIABLE;
On parsing
Window_ADD
it is parsing it into func rule but I want my grammar to parse it to winfunc rule.
Window_ ADD
it is parsing it into winfunc but I don't want that extra space to be there. How can I make Window_ADD parse to winfunc rule instead of Window_ ADD?

You have two options:
1. If you know exactly which function names (terminals) will be used, you may simply change your rule:
WINDOW: 'Window_';
to
WINDOW: 'Window_ADD';
If you want to add more functions, say, Window_DEL, just add one more terminal to this rule:
WINDOW: 'Window_' ('ADD' | 'DEL');
or
WINDOW: 'Window_';
WINDOW_ADD: WINDOW 'ADD';
WINDOW_DEL: WINDOW 'DEL';
2. In case function names are unknown, you may want to use wildcards to determine a terminal:
WINDOW: 'Window_' VALID_ID_CHAR+;
In this case the type of a function is determined during the phase of semantic analysis.

Related

ANTLR 4 parser grammar has trouble with if expression

I've written a simple grammar for a language meant to be used in graph-based dialogue systems (primarily for video games).
Here are the grammars:
parser grammar DialogueScriptParser;
options {
tokenVocab = DialogueScriptLexer;
}
// Entry Point
script: scheduled_block* EOF;
// Scheduled Blocks
scheduled_block:
scheduled_block_open block scheduled_block_close;
scheduled_block_open: LT flag_list? LT;
scheduled_block_close: GT flag_list? GT;
block: statement*;
// Statements
statement:
if_statement
| switch_statement
| compound_statement
| expression_statement
| declaration_statement;
// Compound Statement
compound_statement: LBRACE statement_list? RBRACE;
statement_list: statement+;
// Expression Statement
expression_statement: expression SEMI;
// If Statement
if_statement:
IF LPAREN expression RPAREN statement (ELSE statement)?;
// Switch Statement
switch_statement: SWITCH LPAREN expression LPAREN switch_block;
switch_block: LBRACE switch_label* RBRACE;
switch_label: CASE expression COLON | DEFAULT COLON;
// Declaration Statement
declaration_statement: type declarator_init SEMI;
declarator_init: declarator (ASSIGN expression)?;
declarator: IDENTIFIER;
// Expression
expression_list: expression (COMMA expression);
expression:
name
| literal
| LPAREN expression RPAREN
| expression (INC | DEC)
| expression LBRACK expression RBRACK
| expression LPAREN expression_list? RPAREN
| expression LBRACE expression_list? RBRACE
| (SUB | ADD | INC | DEC | NOT | BIT_NOT) expression
| expression TURNARY expression COLON expression
| expression mul_div_mod_operator expression
| expression add_sub_operator expression
| <assoc = right> expression concat_operator expression
| expression relational_operator expression
| expression and_operator expression
| expression or_operator expression
| expression bitwise_operator expression;
// Operators
concat_operator: CONCAT;
and_operator: AND;
or_operator: OR;
add_sub_operator: ADD | SUB;
mul_div_mod_operator: MUL | DIV | MOD;
relational_operator: GT | LT | LE | GE;
equality_operator: EQUAL | NOTEQUAL;
bitwise_operator:
| '<' '<'
| '>' '>'
| BIT_AND
| BIT_OR
| BIT_XOR;
assignment_operator:
ASSIGN
| ADD_ASSIGN
| SUB_ASSIGN
| MUL_ASSIGN
| DIV_ASSIGN
| AND_ASSIGN
| OR_ASSIGN
| XOR_ASSIGN
| MOD_ASSIGN
| LSHIFT_ASSIGN
| RSHIFT_ASSIGN;
// Types
type:
primitive_type
| type LBRACK RBRACK
| name ('<' type (COMMA type)* '>')?;
primitive_type:
TYPE_BOOLEAN
| TYPE_CHAR
| TYPE_FLOAT_DEFAULT
| TYPE_FLOAT32
| TYPE_FLOAT64
| TYPE_INT_DEFAULT
| TYPE_INT8
| TYPE_INT16
| TYPE_INT32
| TYPE_INT64
| TYPE_UINT_DEFAULT
| TYPE_UINT8
| TYPE_UINT16
| TYPE_UINT32
| TYPE_UINT64
| TYPE_STRING;
// Name
name: namespace? IDENTIFIER (DOT IDENTIFIER)*;
// Namespace
namespace: IDENTIFIER COLONCOLON (namespace)*;
// Flags
flag_list: IDENTIFIER (COMMA IDENTIFIER)*;
// Literals
literal:
INTEGER_LITERAL
| FLOATING_POINT_LITERAL
| BOOLEAN_LITERAL
| CHARACTER_LITERAL
| STRING_LITERAL
| NULL_LITERAL;
and:
lexer grammar DialogueScriptLexer;
// Keywords
TYPE_BOOLEAN: 'bool';
TYPE_CHAR: 'char'; // 16 bits
TYPE_FLOAT_DEFAULT: 'float'; // 32 bits
TYPE_FLOAT32: 'float32';
TYPE_FLOAT64: 'float64';
TYPE_INT_DEFAULT: 'int'; // 32 bits
TYPE_INT8: 'int8';
TYPE_INT16: 'int16';
TYPE_INT32: 'int32';
TYPE_INT64: 'int64';
TYPE_UINT_DEFAULT: 'uint'; // 32 bits
TYPE_UINT8: 'uint8';
TYPE_UINT16: 'uint16';
TYPE_UINT32: 'uint32';
TYPE_UINT64: 'uint64';
TYPE_STRING: 'string'; // 16 bits per character
BREAK: 'break'; // used for switch
CASE: 'case'; // used for switch
DEFAULT: 'default'; // used for switch
IF: 'if';
ELSE: 'else';
SWITCH: 'switch';
// Integer Literals
INTEGER_LITERAL:
DecIntegerLiteral
| HexIntegerLiteral
| OctalIntegerLiteral
| BinaryIntegerLiteral;
fragment DecIntegerLiteral: '0' | NonZeroDigit Digit*;
fragment HexIntegerLiteral: '0' [xX] HexDigit+;
fragment OctalIntegerLiteral: '0' Digit+;
fragment BinaryIntegerLiteral: '0' [bB] BinaryDigit+;
// Floating-Point Literals
FLOATING_POINT_LITERAL: DecFloatingPointLiteral;
fragment DecFloatingPointLiteral:
DecIntegerLiteral? ('.' Digits) FloatTypeSuffix?
| DecIntegerLiteral FloatTypeSuffix?;
// Boolean Literals
BOOLEAN_LITERAL: 'true' | 'false';
// Character Literals
CHARACTER_LITERAL:
'\'' SingleCharacter '\''
| '\'' EscapeSequence '\'';
fragment SingleCharacter: ~['\\\r\n];
fragment EscapeSequence:
'\\\''
| '\\"'
| '\\\\'
| '\\0'
| '\\a'
| '\\b'
| '\\f'
| '\\n'
| '\\r'
| '\\t'
| '\\v';
// String Literals
STRING_LITERAL: '"' StringCharacters? '"';
fragment StringCharacters: StringCharacter+;
fragment StringCharacter: ~["\\\r\n] | EscapeSequence;
// Null Literal
NULL_LITERAL: 'null';
// Separators
LPAREN: '(';
RPAREN: ')';
LBRACE: '{';
RBRACE: '}';
LBRACK: '[';
RBRACK: ']';
SEMI: ';';
COMMA: ',';
DOT: '.';
COLON: ':';
COLONCOLON: '::';
// Operators
ASSIGN: '=';
ADD_ASSIGN: '+=';
SUB_ASSIGN: '-=';
MUL_ASSIGN: '*=';
DIV_ASSIGN: '/=';
AND_ASSIGN: '&=';
OR_ASSIGN: '|=';
XOR_ASSIGN: '^=';
MOD_ASSIGN: '%=';
LSHIFT_ASSIGN: '<<=';
RSHIFT_ASSIGN: '>>=';
GT: '>';
LT: '<';
EQUAL: '==';
LE: '<=';
GE: '>=';
NOTEQUAL: '!=';
NOT: '!';
BIT_NOT: '~';
BIT_AND: '&';
BIT_OR: '|';
BIT_XOR: '^';
/* Defining these here make recognizing scheduled blocks difficult BIT_SHIFT_L: '<<'; BIT_SHIFT_R:
'>>';
*/
AND: '&&';
OR: '||';
INC: '++';
DEC: '--';
ADD: '+';
SUB: '-';
MUL: '*';
DIV: '/';
MOD: '%';
CONCAT: '..';
TURNARY: '?';
// Identifiers
/* Order affects precedence IDENTFIER must come last. */
IDENTIFIER: Letter LetterOrDigit*;
fragment LetterOrDigit: Letter | Digit;
fragment Digits: Digit+;
fragment Digit: '0' | NonZeroDigit;
fragment NonZeroDigit: [1-9];
fragment HexDigit: [0-9a-fA-F];
fragment BinaryDigit: [01];
fragment Letter: [a-zA-Z_];
fragment FloatTypeSuffix: [fFdD];
// Whitespace and Comments
WHITESPACE: [ \t\r\n\u000C]+ -> skip;
COMMENT_BLOCK: '/*' .*? '*/' -> channel(HIDDEN);
COMMENT_LINE: '//' ~[\r\n]* -> channel(HIDDEN);
Project: https://github.com/Sahasrara/DialogueScript
The grammar is working for the most part, but it's struggling to parse certain types of expressions.
Example:
<<
if (intVar == 10 && globalFunc() || "string lit" .. "concat string" == stringVar)
{
anotherFunc();
}
>>
Here's the output tree:
I know there's a precedence issue here, but I'm not entirely sure how to resolve it. Would someone mind pointing me in the right direction?
You are not using the equality_operator rule that contains the == operator. Place it somewhere in your expression rule:
expression
: ...
| expression add_sub_operator expression
| expression equality_operator expression
| <assoc = right> expression concat_operator expression
| ...
;
When placed there, it will have a lower precedence than + and -, and a higher precedence than ..:
Also note that the assignment_operator is not used currently.

Antlr4 mismatched input '<' expecting '<' with (seemingly) no lexer ambiguity

I cannot seem to figure out what antlr is doing here in this grammar. I have a grammar that should match an input like:
i,j : bool;
setvar : set<bool>;
i > 5;
j < 10;
But I keep getting an error telling me that "line 3:13 mismatched input '<' expecting '<'". This tells me there is some ambiguity in the lexer, but I only use '<' in a single token.
Here is the grammar:
//// Parser Rules
grammar MLTL1;
start: block*;
block: var_list ';'
| expr ';'
;
var_list: IDENTIFIER (',' IDENTIFIER)* ':' type ;
type: BASE_TYPE
| KW_SET REL_LT BASE_TYPE REL_GT
;
expr: expr REL_OP expr
| '(' expr ')'
| IDENTIFIER
| INT
;
//// Lexical Spec
// Types
BASE_TYPE: 'bool'
| 'int'
| 'float'
;
// Keywords
KW_SET: 'set' ;
// Op groups for precedence
REL_OP: REL_EQ | REL_NEQ | REL_GT | REL_LT
| REL_GTE | REL_LTE ;
// Relational ops
REL_EQ: '==' ;
REL_NEQ: '!=' ;
REL_GT: '>' ;
REL_LT: '<' ;
REL_GTE: '>=' ;
REL_LTE: '<=' ;
IDENTIFIER
: LETTER (LETTER | DIGIT)*
;
INT
: SIGN? NONZERODIGIT DIGIT*
| '0'
;
fragment
SIGN
: [+-]
;
fragment
DIGIT
: [0-9]
;
fragment
NONZERODIGIT
: [1-9]
;
fragment
LETTER
: [a-zA-Z_]
;
COMMENT : '#' ~[\r\n]* -> skip;
WS : [ \t\r\n]+ -> channel(HIDDEN);
I tested the grammar to see what tokens it is generating for the test input above using this python:
from antlr4 import InputStream, CommonTokenStream
import MLTL1Lexer
import MLTL1Parser
input="""
i,j : bool;
setvar: set<bool>;
i > 5;
j < 10;
"""
lexer = MLTL1Lexer.MLTL1Lexer(InputStream(input))
stream = CommonTokenStream(lexer)
stream.fill()
tokens = stream.getTokens(0,100)
for t in tokens:
print(str(t.type) + " " + t.text)
parser = MLTL1Parser.MLTL1Parser(stream)
parse_tree = parser.start()
print(parse_tree.toStringTree(recog=parser))
And noticed that both '>' and '<' were assigned the same token value despite being two different tokens. Am I missing something here?
(There may be more than just these two instances, but...)
Change REL_OP and BASE_TYPE to parser rules (i.e. make them lowercase.
As you've used them, you're turning many of your intended Lexer rules, effectively into fragments.
I't important to understand that tokens are the "atoms" you have in your grammar, when you combine several of them into another Lexer rule, you just make that the token type.
(If you used grun to dump the tokens you would have seen them identified as REL_OP tokens.
With the changes below, your sample input works just fine.
grammar MLTL1
;
start: block*;
block: var_list ';' | expr ';';
var_list: IDENTIFIER (',' IDENTIFIER)* ':' type;
type: baseType | KW_SET REL_LT baseType REL_GT;
expr: expr rel_op expr | '(' expr ')' | IDENTIFIER | INT;
//// Lexical Spec
// Types
baseType: 'bool' | 'int' | 'float';
// Keywords
KW_SET: 'set';
// Op groups for precedence
rel_op: REL_EQ | REL_NEQ | REL_GT | REL_LT | REL_GTE | REL_LTE;
// Relational ops
REL_EQ: '==';
REL_NEQ: '!=';
REL_GT: '>';
REL_LT: '<';
REL_GTE: '>=';
REL_LTE: '<=';
IDENTIFIER: LETTER (LETTER | DIGIT)*;
INT: SIGN? NONZERODIGIT DIGIT* | '0';
fragment SIGN: [+-];
fragment DIGIT: [0-9];
fragment NONZERODIGIT: [1-9];
fragment LETTER: [a-zA-Z_];
COMMENT: '#' ~[\r\n]* -> skip;
WS: [ \t\r\n]+ -> channel(HIDDEN);

ANTLR grammar not picking the right option

So, I'm trying to assign a method value to a var in a test program, I'm using a Decaf grammar.
The grammar:
// Define decaf grammar
grammar Decaf;
// Reglas LEXER
// Definiciones base para letras y digitos
fragment LETTER: ('a'..'z'|'A'..'Z'|'_');
fragment DIGIT: '0'..'9';
// Las otras reglas de lexer de Decaf
ID: LETTER (LETTER|DIGIT)*;
NUM: DIGIT(DIGIT)*;
CHAR: '\'' ( ~['\r\n\\] | '\\' ['\\] ) '\'';
WS : [ \t\r\n\f]+ -> channel(HIDDEN);
COMMENT
: '/*' .*? '*/' -> channel(2)
;
LINE_COMMENT
: '//' ~[\r\n]* -> channel(2)
;
// -----------------------------------------------------------------------------------------------------------------------------------------
// Reglas PARSER
program:'class' 'Program' '{' (declaration)* '}';
declaration
: structDeclaration
| varDeclaration
| methodDeclaration
;
varDeclaration
: varType ID ';'
| varType ID '[' NUM ']' ';'
;
structDeclaration:'struct' ID '{' (varDeclaration)* '}' (';')?;
varType
: 'int'
| 'char'
| 'boolean'
| 'struct' ID
| structDeclaration
| 'void'
;
methodDeclaration: methodType ID '(' (parameter (',' parameter)*)* ')' block;
methodType
: 'int'
| 'char'
| 'boolean'
| 'void'
;
parameter
: parameterType ID
| parameterType ID '[' ']'
| 'void'
;
parameterType
: 'int'
| 'char'
| 'boolean'
;
block: '{' (varDeclaration)* (statement)* '}';
statement
: 'if' '(' expression ')' block ( 'else' block )? #stat_if
| 'while' '('expression')' block #stat_else
| 'return' expressionOom ';' #stat_return
| methodCall ';' #stat_mcall
| block #stat_block
| location '=' expression #stat_assignment
| (expression)? ';' #stat_line
;
expressionOom: expression |;
location: (ID|ID '[' expression ']') ('.' location)?;
expression
: location #expr_loc
| methodCall #expr_mcall
| literal #expr_literal
| '-' expression #expr_minus // Unary Minus Operation
| '!' expression #expr_not // Unary NOT Operation
| '('expression')' #expr_parenthesis
| expression arith_op_fifth expression #expr_arith5 // * / % << >>
| expression arith_op_fourth expression #expr_arith4 // + -
| expression arith_op_third expression #expr_arith3 // == != < <= > >=
| expression arith_op_second expression #expr_arith2 // &&
| expression arith_op_first expression #expr_arith1 // ||
;
methodCall: ID '(' arg1 ')';
// Puede ir algo que coincida con arg2 o nada, en caso de una llamada a metodo sin parametro
arg1: arg2 |;
// Expression y luego se utiliza * para permitir 0 o más parametros adicionales
arg2: (arg)(',' arg)*;
arg: expression;
// Operaciones
// Divididas por nivel de precedencia
// Especificación de precedencia: https://anoopsarkar.github.io/compilers-class/decafspec.html
rel_op : '<' | '>' | '<=' | '>=' ;
eq_op : '==' | '!=' ;
arith_op_fifth: '*' | '/' | '%' | '<<' | '>>';
arith_op_fourth: '+' | '-';
arith_op_third: rel_op | eq_op;
arith_op_second: '&&';
arith_op_first: '||';
literal : int_literal | char_literal | bool_literal ;
int_literal : NUM ;
char_literal : '\'' CHAR '\'' ;
bool_literal : 'true' | 'false' ;
And the test program is as follows:
class Program
{
int factorial(int b)
{
int n;
n = 1;
return n+2;
}
void main(void)
{
int a;
int b;
b=0;
a=factorial(b);
factorial(b);
return;
}
}
The parse tree for this program looks as following, at least for the part I'm interested which is a=factorial(b):
This tree is wrong, since it should look like location = expression -> methodCall
The following tree is how it looks on a friend's implementation, and it should sort of look like this if the grammar was correctly implemented:
This is correctly implemented, or the result I need, since I want the tree to look like location = expression -> methodCall and not location = expression -> location. If I remove the parameter from a=factorial(b) and leave it as a=factorial(), it will be read correctly as a methodCall, so I'm not sure what I'm missing.
So my question is, I'm not sure where I'm messing up in the grammar, I guess it's either on location or expression, but I'm not sure how to adjust it to behave the way I want it to. I sort of just got the rules literally from the specification we were provided.
In an ANTLR rule, alternatives are matches from top to bottom. So in your expression rule:
expression
: location #expr_loc
| methodCall #expr_mcall
...
;
the generated parser will try to match a location before it tries to match a methodCall. Try swapping those two around:
expression
: methodCall #expr_mcall
| location #expr_loc
...
;

ANTLR grammar issues with negative numbers

My ANTLR Grammar for simple expressions is as below:
This grammar works for most of the scenarios except when I try to use negative numbers.
abs(1.324) is valid
abs(-1.324) is being thrown as an error.
Or if the expression is just a negative number such as -1.344 I am having the following error in the console.
grammar ExpressionGrammar;
parse: expr EOF;
expr:
MIN expr
| expr ( MUL | DIV) expr
| expr ( ADD | MIN) expr
| expr ( MOD ) expr
| NUM
| ID
| STRING
| function
| '(' expr ')';
function: ID '(' arguments? ')';
arguments: expr ( ',' expr)*;
/* Tokens */
MUL: '*';
DIV: '/';
MIN: '-';
ADD: '+';
MOD: '%';
OPEN_PAR: '(';
CLOSE_PAR: ')';
NUM: ([0-9]*[.])?[0-9]+;
STRING: '"' ~ ["]* '"';
fragment ID_NODE: [a-zA-Z_$][a-zA-Z0-9_$]*;
ID: ID_NODE ('.' ID_NODE)*;
COMMENT: '/*' .*? '*/' -> skip;
LINE_COMMENT
: '//' ~[\r\n]* -> skip
;
WS: [ \r\t\n]+ -> skip;
The grammar seems fine to me. It could be a bug with the runtime you're using, but that seems odd to me, given you're not doing anything special.
With the Java runtime, this is what I get when parsing/lexing the input abs(-1.324):
The following tokens are produced:
ID `abs`
OPEN_PAR `(`
MIN `-`
NUM `1.324`
CLOSE_PAR `)`
EOF `<EOF>`
and the entry point parse gives:

My Antlr4 Grammar doesn't understand math expressions

i have this Grammar
grammar Arith;
exp : LPAREN exp RPAREN
| fun
| num
| exp (OP exp)+
;
num : LPAREN num RPAREN
| LESS num
| INT
| INT 'b'
| '0x' INT
;
fun : LPAREN fun RPAREN
| LESS fun
| FUN_TXT LPAREN exp RPAREN
| 'pow' LPAREN exp ',' exp RPAREN
;
INT : ('0'..'9')+ ;
LPAREN : '(' ;
RPAREN : ')' ;
FUN_TXT : 'log' | 'acos' | 'asin' | 'atan' | 'cos' | 'abs' | 'sin' | 'sqrt' | 'tan' ;
OP : ADD | LESS | MUL | DIV | MOD ;
ADD : '+' ;
LESS : '-' ;
MUL : '*' ;
DIV: '/' ;
MOD: '%' ;
WS : [ \t\r\n] -> skip ;
I try to insert sin(-1) but the lexer said me "no viable alternative at input '-'".
I think that program translate it in "exp -> exp (OP exp)+" instead of "exp -> fun(num) -> fun(LESS num)"
Could someone help me to understand what i've forget and how change my rules in the right way?
Thanks
First I would simplify your rules for num and fun
num : INT
| INT 'b'
| '0x' INT
;
fun : FUN_TXT LPAREN exp RPAREN
| 'pow' LPAREN exp ',' exp RPAREN
;
Brackets and minuses are handled by the exp rule.
You also need to separate the ADD and SUB from the multiplicative operators to get precedence right. The calculator example for the Antlr grammars uses
expression
: multiplyingExpression ((PLUS|MINUS) multiplyingExpression)*
;
multiplyingExpression
: powExpression ((TIMES|DIV) powExpression)*
;
powExpression
: atom (POW expression)?
;
atom
: scientific
| variable
| LPAREN expression RPAREN
| func
;
scientific
: number (E number)?
;
func
: funcname LPAREN expression RPAREN
;
I would be inclined to start from that.