I am trying to create a stacked barplot using a data frame I have created that
looks like this
I want the stacked bar chart to show the 'types of exploitation' on the x axis, and then the male and female figures stacked on top of each other under these headings.
Is there a way to do this reading the info from my df? I have read about creating an index to do this but do not understand if this is the solution?
I also need a legend showing 'male' and 'female'
You can stack bars on top of eachother by the bottom function in matplotlib package.
Step 1: Create dataframe and import packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
d = {'male': [37,1032,1], 'female': [96,134,1]}
df = pd.DataFrame(data=d, index=['a', 'b', 'c'])
Step 2: Create graph
r = [0,1,2]
bars1 = df['female']
bars2 = df['male']
plt.bar(r, bars1)
plt.bar(r, bars2,bottom=bars1, color='#557f2d')
plt.xticks(r, df.index, fontweight='bold')
plt.legend(labels = ['female', 'male'])
plt.show()
More information could be found on this webpage: Link
Related
I have a DataFrame and need to make a scatter-plot from it.
I need to use 2 columns as the x-axis and y-axis and only need to plot 2 rows from the entire dataset. Any suggestions?
For example, my dataframe is below (50 states x 4 columns). I need to plot 'rgdp_change' on the x-axis vs 'diff_unemp' on the y-axis, and only need to plot for the states, "Michigan" and "Wisconsin".
So from the dataframe, you'll need to select the rows from a list of the states you want: ['Michigan', 'Wisconsin']
I also figured you would probably want a legend or some way to differentiate one point from the other. To do this, we create a colormap assigning a different color to each state. This way the code is generalizable for more than those two states.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as colors
# generate a random df with the relevant rows, columns to your actual df
df = pd.DataFrame({'State':['Alabama', 'Alaska', 'Michigan', 'Wisconsin'], 'real_gdp':[1.75*10**5, 4.81*10**4, 2.59*10**5, 1.04*10**5],
'rgdp_change': [-0.4, 0.5, 0.4, -0.5], 'diff_unemp': [-1.3, 0.4, 0.5, -11]})
fig, ax = plt.subplots()
states = ['Michigan', 'Wisconsin']
colormap = cm.viridis
colorlist = [colors.rgb2hex(colormap(i)) for i in np.linspace(0, 0.9, len(states))]
for i,c in enumerate(colorlist):
x = df.loc[df["State"].isin(['Michigan', 'Wisconsin'])].rgdp_change.values[i]
y = df.loc[df["State"].isin(['Michigan', 'Wisconsin'])].diff_unemp.values[i]
legend_label = states[i]
ax.scatter(x, y, label=legend_label, s=50, linewidth=0.1, c=c)
ax.legend()
plt.show()
Use the dataframe plot method, but first filter the sates you need using index isin method:
states = ["Michigan", "Wisconsin"]
df[df.index.isin(states)].plot(kind='scatter', x='rgdp_change', y='diff_unemp')
I am using MatLibPlot to fetch data from an excel file and to create a scatter plot.
Here is a minimal sample table
In my scatter plot, I have two sets of XY values. In both sets, my X values are country population. I have Renewable Energy Consumed as my Y value in one set and Non-Renewable Energy Consumed in the other set.
For each Country, I would like to have a line from the renewable point to the non-renewable point.
My example code is as follows
import pandas as pd
import matplotlib.pyplot as plt
excel_file = 'example_graphs.xlsx'
datasheet = pd.read_excel(excel_file, sheet_name=0, index_col=0)
ax = datasheet.plot.scatter("Xcol","Y1col",c="b",label="set_one")
datasheet.scatter("Xcol","Y2col",c="r",label="set_two", ax=ax)
ax.show()
And it produces the following plot
I would love to be able to draw a line between the two sets of points, preferably a line I can change the thickness and color of.
As commented, you could simply loop over the dataframe and plot a line for each row.
import pandas as pd
import matplotlib.pyplot as plt
datasheet = pd.DataFrame({"Xcol" : [1,2,3],
"Y1col" : [25,50,75],
"Y2col" : [75,50,25]})
ax = datasheet.plot.scatter("Xcol","Y1col",c="b",label="set_one")
datasheet.plot.scatter("Xcol","Y2col",c="r",label="set_two", ax=ax)
for n,row in datasheet.iterrows():
ax.plot([row["Xcol"]]*2,row[["Y1col", "Y2col"]], color="limegreen", lw=3, zorder=0)
plt.show()
I am creating probability distributions for each column of my data frame by distplot from seaborn library sns.distplot(). For one plot I do
x = df['A']
sns.distplot(x);
I am trying to use the FacetGrid & Map to have all plots for each columns at once
in this way. But doesn't work at all.
g = sns.FacetGrid(df, col = 'A','B','C','D','E')
g.map(sns.distplot())
I think you need to use melt to reshape your dataframe to long format, see this MVCE:
df = pd.DataFrame(np.random.random((100,5)), columns = list('ABCDE'))
dfm = df.melt(var_name='columns')
g = sns.FacetGrid(dfm, col='columns')
g = (g.map(sns.distplot, 'value'))
Output:
From seaborn 0.11.2 it is not recommended to use FacetGrid directly. Instead, use sns.displot for figure-level plots.
np.random.seed(2022)
df = pd.DataFrame(np.random.random((100,5)), columns = list('ABCDE'))
dfm = df.melt(var_name='columns')
g = sns.displot(data=dfm, x='value', col='columns', col_wrap=3, common_norm=False, kde=True, stat='density')
You're getting this wrong on two levels.
Python syntax.
FacetGrid(df, col = 'A','B','C','D','E') is invalid, because col gets set to A and the remaining characters are interpreted as further arguments. But since they are not named, this is invalid python syntax.
Seaborn concepts.
Seaborn expects a single column name as input for the col or row argument. This means that the dataframe needs to be in a format that has one column which determines to which column or row the respective datum belongs.
You do not call the function to be used by map. The idea is of course that map itself calls it.
Solutions:
Loop over columns:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame(np.random.randn(14,5), columns=list("ABCDE"))
fig, axes = plt.subplots(ncols=5)
for ax, col in zip(axes, df.columns):
sns.distplot(df[col], ax=ax)
plt.show()
Melt dataframe
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame(np.random.randn(14,5), columns=list("ABCDE"))
g = sns.FacetGrid(df.melt(), col="variable")
g.map(sns.distplot, "value")
plt.show()
You can use the following:
# listing dataframes types
list(set(df.dtypes.tolist()))
# include only float and integer
df_num = df.select_dtypes(include = ['float64', 'int64'])
# display what has been selected
df_num.head()
# plot
df_num.hist(figsize=(16, 20), bins=50, xlabelsize=8, ylabelsize=8);
I think the easiest approach is to just loop the columns and create a plot.
import numpy as np
improt pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.random((100,5)), columns = list('ABCDE'))
for col in df.columns:
hist = df[col].hist(bins=10)
print("Plotting for column {}".format(col))
plt.show()
My DataFrame's structure
trx.columns
Index(['dest', 'orig', 'timestamp', 'transcode', 'amount'], dtype='object')
I'm trying to plot transcode (transaction code) against amount to see the how much money is spent per transaction. I made sure to convert transcode to a categorical type as seen below.
trx['transcode']
...
Name: transcode, Length: 21893, dtype: category
Categories (3, int64): [1, 17, 99]
The result I get from doing plt.scatter(trx['transcode'], trx['amount']) is
Scatter plot
While the above plot is not entirely wrong, I would like the X axis to contain just the three possible values of transcode [1, 17, 99] instead of the entire [1, 100] range.
Thanks!
In matplotlib 2.1 you can plot categorical variables by using strings. I.e. if you provide the column for the x values as string, it will recognize them as categories.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.DataFrame({"x" : np.random.choice([1,17,99], size=100),
"y" : np.random.rand(100)*100})
plt.scatter(df["x"].astype(str), df["y"])
plt.margins(x=0.5)
plt.show()
In order to optain the same in matplotlib <=2.0 one would plot against some index instead.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.DataFrame({"x" : np.random.choice([1,17,99], size=100),
"y" : np.random.rand(100)*100})
u, inv = np.unique(df["x"], return_inverse=True)
plt.scatter(inv, df["y"])
plt.xticks(range(len(u)),u)
plt.margins(x=0.5)
plt.show()
The same plot can be obtained using seaborn's stripplot:
sns.stripplot(x="x", y="y", data=df)
And a potentially nicer representation can be done via seaborn's swarmplot:
sns.swarmplot(x="x", y="y", data=df)
I have the following dataframe:
I want to create pie charts one for each row, the thing is that i am having trouble with the charts order, i want each chart to have a figsize of lets say 5,5 and that every row in my dataframe will be a row of plot in my subplots with the index as title.
tried many combinations and playing with pyploy.subplots but not success.
would be glad for some help.
Thanks
You can either transpose your dataframe and using pandas pie kind for plotting, i.e. df.transpose().plot(kind='pie', subplots=True) or iterate through rows while sub plotting.
An example using subplots:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# Recreate a similar dataframe
rows = ['rows {}'.format(i) for i in range(5)]
columns = ['hits', 'misses']
col1 = np.random.random(5)
col2 = 1 - col1
data = zip(col1, col2)
df = pd.DataFrame(data=data, index=rows, columns=columns)
# Plotting
fig = plt.figure(figsize=(15,10))
for i, (name, row) in enumerate(df.iterrows()):
ax = plt.subplot(2,3, i+1)
ax.set_title(row.name)
ax.set_aspect('equal')
ax.pie(row, labels=row.index)
plt.show()