I am beginner in Keras. I am tring to build a model for which i am using Sequential model. When i am tring to reduce the input size from 28 to 14 or lesser by using maxpooling function then the maxpooling function results does't display on call to the model.summary() function. I am tring to achive an accuracy of 0.99 or above after traing i.e, on call to model.score() the accuracy result should be 0.99 or above. Model build my me so far can be seen here
from keras.layers import Activation, MaxPooling2D
model = Sequential()
model.add(Convolution2D(32, 3, 3, activation='relu', input_shape=(28,28,1)))
model.add(Convolution2D(32, 1, activation='relu'))
MaxPooling2D(pool_size=(2, 2))
model.add(Convolution2D(32, 26))
model.add(Convolution2D(10, 1))
model.add(Flatten())
model.add(Activation('softmax'))
model.summary()
Output -
Layer (type) Output Shape Param #
=================================================================
conv2d_29 (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
conv2d_30 (Conv2D) (None, 26, 26, 32) 1056
_________________________________________________________________
conv2d_31 (Conv2D) (None, 1, 1, 32) 692256
_________________________________________________________________
conv2d_32 (Conv2D) (None, 1, 1, 10) 330
_________________________________________________________________
flatten_7 (Flatten) (None, 10) 0
_________________________________________________________________
activation_7 (Activation) (None, 10) 0
=================================================================
Total params: 693,962
Trainable params: 693,962
Non-trainable params: 0
____________________________
Batch size i am using is 32 and number of epoch is 10.
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=32, nb_epoch=10, verbose=1)
score = model.evaluate(X_test, Y_test, verbose=0)
print(score)
Output after training -
[0.09016687796734459, 0.9814]
You are not adding the Maxpooling2D layer to your model...
model.add(MaxPooling2D(pool_size=(2, 2)))
Also, the output of your maxpooling will have shape (None, 13, 13, 32), the convolutional kernel in the next layer (in your case 26) can't be larger than the dimensions your current (13). Your code should be something like this:
from keras.layers import Activation, MaxPooling2D, Dense
model = Sequential()
model.add(Convolution2D(32, 3, 3, activation='relu', input_shape=(28,28,1)))
model.add(Convolution2D(32, 1, activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 8))
model.add(Convolution2D(10, 6))
model.add(Flatten())
model.add(Activation('softmax'))
print(model.summary())
Output
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
conv2d_2 (Conv2D) (None, 26, 26, 32) 1056
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 6, 6, 32) 65568
_________________________________________________________________
conv2d_4 (Conv2D) (None, 1, 1, 10) 11530
_________________________________________________________________
flatten_1 (Flatten) (None, 10) 0
_________________________________________________________________
activation_1 (Activation) (None, 10) 0
=================================================================
Total params: 78,474
Trainable params: 78,474
Non-trainable params: 0
___________________________________
P.S.: I would consider using smaller kernel sizes and a FC layer at the output, as it is a more practical solution in most cases than trying to match convolution output shapes
Related
I am programming a CNN example for demonstration purposes to university students and it should classify MNIST with upwards of 80% accuracy. I use the following architecture and the training takes like 10 Minutes to reach that accuracy even if I use a relatively high batch size of 128. I am using the standard CPU on Google Colab without any hardware accelerator, the AdaDelta cost function, 10 epochs and categorical cross entropy loss function.
Is it possible to improve the training time or is it impossible to reach 80% accuracy under 1 Minute with the given hardware?
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 26, 26, 32) 320
max_pooling2d (MaxPooling2D (None, 13, 13, 32) 0
)
conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
max_pooling2d_1 (MaxPooling (None, 5, 5, 64) 0
2D)
conv2d_2 (Conv2D) (None, 3, 3, 64) 36928
flatten (Flatten) (None, 576) 0
dense (Dense) (None, 64) 36928
dense_1 (Dense) (None, 10) 650
=================================================================
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0
_________________________________________________________________
I was able to get very fast training with the following model:
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(28,28,1)))
convLayer01 = Activation('relu')
model.add(convLayer01)
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
convLayer02 = MaxPooling2D(pool_size=(2,2))
model.add(convLayer02)
model.add(Conv2D(64,(3, 3)))
convLayer03 = Activation('relu')
model.add(convLayer03)
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
convLayer04 = MaxPooling2D(pool_size=(2,2))
model.add(convLayer04)
model.add(GlobalAveragePooling2D())
model.add(Dense(10))
model.add(Activation('softmax'))
The trick in this case is to use GlobalAveragePooling2D instead of Dense layers. I got >90% accuracy in 1 epoch.
I'm trying to train my keras model but shapes are incompatible.
The error says
ValueError: Shapes (None, 3) and (None, 3, 3) are incompatible
My train set's shape is (2000, 3, 768) and lable's shape is (2000, 3).
What is the wrong the point?
Model define & fit code
input_shape = x_train.shape[1:]
model = my_dnn(input_shape, 3)
model.fit(x_train, y_train, epochs=25, verbose=1)
Model code
def my_dnn(input, num_classes):
model = Sequential()
model.add(tf.keras.Input(input))
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(225))
model.add(Activation('relu'))
model.add(Dense(100))
model.add(Activation('relu'))
model.add(Dense(num_classes))
model.add(Activation('sigmoid'))
model.compile( loss='categorical_crossentropy',
optimizer='adam',
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
return model
In addition to what's said, it seems you are carrying the second dimension of the input data until the end of the model. So your model summary is something like this:
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (None, 3, 1024) 787456
_________________________________________________________________
activation_1 (Activation) (None, 3, 1024) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 3, 1024) 0
_________________________________________________________________
dense_2 (Dense) (None, 3, 512) 524800
_________________________________________________________________
activation_2 (Activation) (None, 3, 512) 0
_________________________________________________________________
dense_3 (Dense) (None, 3, 225) 115425
_________________________________________________________________
activation_3 (Activation) (None, 3, 225) 0
_________________________________________________________________
dense_4 (Dense) (None, 3, 100) 22600
_________________________________________________________________
activation_4 (Activation) (None, 3, 100) 0
_________________________________________________________________
dense_5 (Dense) (None, 3, 3) 303
_________________________________________________________________
activation_5 (Activation) (None, 3, 3) 0
=================================================================
Total params: 1,450,584
Trainable params: 1,450,584
Non-trainable params: 0
As you can see, the output shape of the model (None, 3, 3) is not compatible with the label's shape (None, 3), and at some point, you need to use a Flatten layer.
There are two possible reasons:
Your problem is multi-class classification, hence you need softmax instead of sigmoid + accuracy or CategoricalAccuracy() as a metric.
Your problem is multi-label classification, hence you need binary_crossentropy and tf.keras.metrics.BinaryAccuracy()
Depending on how your dataset is built/the task you are trying to solve, you need to opt for one of those.
For case 1, ensure your data is OHE(one-hot encoded).
Also, Marco Cerliani and Amir (in the comment below) point out that the data output needs to be in a 2D format rather than 3D : you should either preprocess the data accordingly before feeding it to the network or use, as suggested in the comment below, a Flatten() at a point (probably before the final Dense())
I build a anomaly detection model using conv-autoencoder on UCSD_ped2 dataset. What puzzles me is that after very few epochs ,the val_loss don't decrease. It seem that the model couldn't learn any longer. I have done some research to improve my model,but it doesn't getting better. what should i do to fix it?
Here's my model's struct:
x=144;y=224
input_img = Input(shape = (x, y, inChannel))
bn1= BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(input_img)
conv1 = Conv2D(256, (11, 11), strides=(4,4),activation='relu',
kernel_regularizer=regularizers.l2(0.0005),
kernel_initializer=initializers.glorot_normal(seed=None),
padding='same')(bn1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
bn2= BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(pool1)
conv2 = Conv2D(128, (5, 5),activation='relu',
kernel_regularizer=regularizers.l2(0.0005),
kernel_initializer=initializers.glorot_normal(seed=None),
padding='same')(bn2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
bn3= BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(pool2)
conv3 = Conv2D(64, (3, 3), activation='relu',
kernel_regularizer=regularizers.l2(0.0005),
kernel_initializer=initializers.glorot_normal(seed=None),
padding='same')(bn3)
ubn3=BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(conv3)
uconv3=Conv2DTranspose(128, (3,3),activation='relu',
kernel_regularizer=regularizers.l2(0.0005),
kernel_initializer=initializers.glorot_normal(seed=None),
padding='same')(ubn3)
upool3=UpSampling2D(size=(2, 2))(uconv3)
ubn2=BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(upool3)
uconv2=Conv2DTranspose(256, (3, 3),activation='relu',
kernel_regularizer=regularizers.l2(0.0005),
kernel_initializer=initializers.glorot_normal(seed=None),
padding='same')(ubn2)
upool2=UpSampling2D(size=(2, 2))(uconv2)
ubn1=BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(upool2)
decoded = Conv2DTranspose(1, (11, 11), strides=(4, 4),
kernel_regularizer=regularizers.l2(0.0005),
kernel_initializer=initializers.glorot_normal(seed=None),
activation='sigmoid', padding='same')(ubn1)
autoencoder = Model(input_img, decoded)
autoencoder.compile(loss = 'mean_squared_error', optimizer ='Adadelta',metrics=['accuracy'])
history=autoencoder.fit(X_train, Y_train,validation_split=0.3,
batch_size = batch_size, epochs = epochs, verbose = 0,
shuffle=True,
callbacks=[earlystopping,checkpointer,reduce_lr])
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 144, 224, 1) 0
_________________________________________________________________
batch_normalization_1 (Batch (None, 144, 224, 1) 4
_________________________________________________________________
conv2d_1 (Conv2D) (None, 36, 56, 256) 31232
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 18, 28, 256) 0
_________________________________________________________________
batch_normalization_2 (Batch (None, 18, 28, 256) 1024
_________________________________________________________________
conv2d_2 (Conv2D) (None, 18, 28, 128) 819328
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 9, 14, 128) 0
_________________________________________________________________
batch_normalization_3 (Batch (None, 9, 14, 128) 512
_________________________________________________________________
conv2d_3 (Conv2D) (None, 9, 14, 64) 73792
_________________________________________________________________
batch_normalization_4 (Batch (None, 9, 14, 64) 256
_________________________________________________________________
conv2d_transpose_1 (Conv2DTr (None, 9, 14, 128) 73856
_________________________________________________________________
up_sampling2d_1 (UpSampling2 (None, 18, 28, 128) 0
_________________________________________________________________
batch_normalization_5 (Batch (None, 18, 28, 128) 512
_________________________________________________________________
conv2d_transpose_2 (Conv2DTr (None, 18, 28, 256) 295168
_________________________________________________________________
up_sampling2d_2 (UpSampling2 (None, 36, 56, 256) 0
_________________________________________________________________
batch_normalization_6 (Batch (None, 36, 56, 256) 1024
_________________________________________________________________
conv2d_transpose_3 (Conv2DTr (None, 144, 224, 1) 30977
=================================================================
Total params: 1,327,685
Trainable params: 1,326,019
Non-trainable params: 1,666
the batch size=30;epoch=100 training data has 1785 pic; validation data has 765 pic.
I have tried :
delete kernel_regularizer;
adding ReduceLROnPlateau.
,but it only get a little improve.
Epoch 00043: ReduceLROnPlateau reducing learning rate to 9.99999874573554e-12.
Epoch 00044: val_loss did not improve from 0.00240
Epoch 00045: val_loss did not improve from 0.00240
As the val_loss get 0.00240, it didn't decrease...
The following figure was loss with epoch.
The following figure show model's reconstruction result which are truly poor.How can I making my model more workful?
Based on your screenshot, It seems that it is not an issue of overfitting or underfitting.
On my understanding:
Underfitting – Validation and training error high
Overfitting – Validation error is high, training error low
Good fit – Validation error low, slightly higher than the training error
Generally speaking, the dataset should be split properly for training and validation.
Typically the training set should be 4 times (80/20) the number of your validation set.
My suggestion is that you can try to increase the number of your datasets by doing data augmentation and continue the training.
Kindly refer to the documentation for data augmentation.
I'm trying to train a Neural Network on a dataset for liveness anti-spoofing. I have some videos in two folders named genuine and fake. I have extracted 10 frames of each video and saved them in two folders with aforementioned names under a new directory tarining.
--/training/
----/genuine/ #containes 10frame*300videos=3000images
----/fake/ #containes 10frame*800videos=8000images
I designed the following 3D Convent using Keras as my first try, but after running it, it throws the following exception:
from keras.preprocessing.image import ImageDataGenerator
from keras import Model, optimizers, activations, losses, regularizers, backend, Sequential
from keras.layers import Dense, MaxPooling3D, AveragePooling3D, Conv3D, Input, Flatten, BatchNormalization
BATCH_SIZE = 10
TARGET_SIZE = (224, 224)
train_datagen = ImageDataGenerator(rescale=1.0/255,
data_format='channels_last',
validation_split=0.2,
shear_range=0.0,
zoom_range=0,
horizontal_flip=False,
featurewise_center=False,
featurewise_std_normalization=False,
width_shift_range=False,
height_shift_range=False)
train_generator = train_datagen.flow_from_directory("./training/",
target_size=TARGET_SIZE,
batch_size=BATCH_SIZE,
class_mode='binary',
shuffle=False,
subset='training')
validation_generator = train_datagen.flow_from_directory("./training/",
target_size=TARGET_SIZE,
batch_size=BATCH_SIZE,
class_mode='binary',
shuffle=False,
subset='validation')
SHAPE = (10, 224, 224, 3)
model = Sequential()
model.add(Conv3D(filters=128, kernel_size=(1, 3, 3), data_format='channels_last', activation='relu', input_shape=(10, 224, 224, 3)))
model.add(MaxPooling3D(data_format='channels_last', pool_size=(1, 2, 2)))
model.add(Conv3D(filters=64, kernel_size=(2, 3, 3), activation='relu'))
model.add(MaxPooling3D(pool_size=(1, 2, 2)))
model.add(Conv3D(filters=32, kernel_size=(2, 3, 3), activation='relu'))
model.add(Conv3D(filters=32, kernel_size=(2, 3, 3), activation='relu'))
model.add(MaxPooling3D(pool_size=(1, 2, 2)))
model.add(Conv3D(filters=16, kernel_size=(2, 3, 3), activation='relu'))
model.add(Conv3D(filters=16, kernel_size=(2, 3, 3), activation='relu'))
model.add(AveragePooling3D())
model.add(BatchNormalization())
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer=optimizers.adam(), loss=losses.binary_crossentropy, metrics=['accuracy'])
model.fit_generator(train_generator, steps_per_epoch=train_generator.samples/train_generator.batch_size, epochs=5, validation_data=validation_generator, validation_steps=validation_generator.samples/validation_generator.batch_size)
model.save('3d.h5')
Here is the Error:
ValueError: Error when checking input: expected conv3d_1_input to have 5 dimensions, but got array with shape (10, 224, 224, 3)
And this is the output of model.summary()
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv3d_1 (Conv3D) (None, 10, 222, 222, 128) 3584
_________________________________________________________________
max_pooling3d_1 (MaxPooling3 (None, 10, 111, 111, 128) 0
_________________________________________________________________
conv3d_2 (Conv3D) (None, 9, 109, 109, 64) 147520
_________________________________________________________________
max_pooling3d_2 (MaxPooling3 (None, 9, 54, 54, 64) 0
_________________________________________________________________
conv3d_3 (Conv3D) (None, 8, 52, 52, 32) 36896
_________________________________________________________________
conv3d_4 (Conv3D) (None, 7, 50, 50, 32) 18464
_________________________________________________________________
max_pooling3d_3 (MaxPooling3 (None, 7, 25, 25, 32) 0
_________________________________________________________________
conv3d_5 (Conv3D) (None, 6, 23, 23, 16) 9232
_________________________________________________________________
conv3d_6 (Conv3D) (None, 5, 21, 21, 16) 4624
_________________________________________________________________
average_pooling3d_1 (Average (None, 2, 10, 10, 16) 0
_________________________________________________________________
batch_normalization_1 (Batch (None, 2, 10, 10, 16) 64
_________________________________________________________________
dense_1 (Dense) (None, 2, 10, 10, 32) 544
_________________________________________________________________
dense_2 (Dense) (None, 2, 10, 10, 1) 33
=================================================================
Total params: 220,961
Trainable params: 220,929
Non-trainable params: 32
__________________________________________________________
I'd appreciate any help to fix the exception. By the way, I'm using TensorFlow as backend if it helps to solve the problem.
As #thushv89 mentioned in the comments Keras has no build-in video generator which causes a lot of problems for those who will work with big video datasets. Therefore, I wrote a simple VideoDataGenerator which works almost as simple as ImageDataGenerator. The script could be found here on my github in case someone needs it in the future.
I get a dense layer shape error with Keras Version 2.1.0. This problem only happens with this version of Keras (2.1.0). I am in no position to upgrade the version since it's on a cluster so I am trying to find a fix for the time being. My model is defined as below.
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=(32, 32, 3)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=config["optimizer"],
metrics=['accuracy'])
I have done one hot encoding as shown below.
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
The model summary is
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 30, 30, 32) 896
_________________________________________________________________
conv2d_2 (Conv2D) (None, 28, 28, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 14, 14, 64) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 12544) 0
_________________________________________________________________
dense_1 (Dense) (None, 128) 1605760
_________________________________________________________________
dropout_2 (Dropout) (None, 128) 0
_________________________________________________________________
dense_2 (Dense) (None, 10) 1290
=================================================================
Total params: 1,626,442
Trainable params: 1,626,442
Non-trainable params: 0
_____________________________________
The error I get is :
ValueError: Error when checking target: expected dense_2 to have 2
dimensions, but got array with shape (50000, 1, 10)
The exact same code works perfectly in Keras 2.2.4