Related to Dataframe aggregate method passing list problem and Pandas fails to aggregate with a list of aggregation functions
Consider this dataframe
import pandas as pd
import numpy as np
df = pd.DataFrame(index=range(10))
df['a'] = [ 3 * x for x in range(10) ]
df['b'] = [ 1 -2 * x for x in range(10) ]
According to the documentation for aggregate you should be able to specify which columns to aggregate using a dict like this:
df.agg({'a' : 'mean'})
Which returns
a 13.5
But if you try to aggregate with a user-defined function like this one
def nok_mean(x):
return np.mean(x)
df.agg({'a' : nok_mean})
It returns the mean for each row rather than the column
a
0 0.0
1 3.0
2 6.0
3 9.0
4 12.0
5 15.0
6 18.0
7 21.0
8 24.0
9 27.0
Why does the user-defined function not return the same as aggregating with np.mean or 'mean'?
This is using pandas version 0.23.4, numpy version 1.15.4, python version 3.7.1
The issue has to do with applying np.mean to a series. Let's look at a few examples:
def nok_mean(x):
return x.mean()
df.agg({'a': nok_mean})
a 13.5
dtype: float64
this works as expected because you are using pandas version of mean, which can be applied to a series or a dataframe:
df['a'].agg(nok_mean)
df.apply(nok_mean)
Let's see what happens when np.mean is applied to a series:
def nok_mean1(x):
return np.mean(x)
df['a'].agg(nok_mean1)
df.agg({'a':nok_mean1})
df['a'].apply(nok_mean1)
df['a'].apply(np.mean)
all return
0 0.0
1 3.0
2 6.0
3 9.0
4 12.0
5 15.0
6 18.0
7 21.0
8 24.0
9 27.0
Name: a, dtype: float64
when you apply np.mean to a dataframe it works as expected:
df.agg(nok_mean1)
df.apply(nok_mean1)
a 13.5
b -8.0
dtype: float64
in order to get np.mean to work as expected with a function pass an ndarray for x:
def nok_mean2(x):
return np.mean(x.values)
df.agg({'a':nok_mean2})
a 13.5
dtype: float64
I am guessing all of this has to do with apply, which is why df['a'].apply(nok_mean2) returns an attribute error.
I am guessing here in the source code
When you define your nok_mean function, your function definition is basically saying that you want np.mean for each row
It finds the mean for each row and returns you the result.
For example, if your dataframe looked like this:
a b
0 [0, 0] 1
1 [3, 4] -1
2 [6, 8] -3
3 [9, 12] -5
4 [12, 16] -7
5 [15, 20] -9
6 [18, 24] -11
7 [21, 28] -13
8 [24, 32] -15
9 [27, 36] -17
Then df.agg({'a', nok_mean}) would return this:
a
0 0.0
1 3.5
2 7.0
3 10.5
4 14.0
5 17.5
6 21.0
7 24.5
8 28.0
9 31.5
This is related to how calculations are made on pandas side.
When you pass a dict of functions, the input is treated as a DataFrame instead of a flattened array. After that all calculations are made over the index axis by default. That's why you're getting the means by row.
If you go to the docs page you'll see:
The aggregation operations are always performed over an axis, either the
index (default) or the column axis. This behavior is different from
numpy aggregation functions (mean, median, prod, sum, std,
var), where the default is to compute the aggregation of the flattened
array, e.g., numpy.mean(arr_2d) as opposed to numpy.mean(arr_2d,
axis=0).
__
I think the only way to emulate numpy's behavior and pass a dict of functions to agg at the same time is df.agg(nok_mean)['a'].
Related
I have a below dataframe, and my requirement is that, if both columns have np.nan then no change, if either of column has empty value then fill na with 0 value. I wrote this code but why its not working. Please suggest.
import pandas as pd
import numpy as np
data = {'Age': [np.nan, np.nan, 22, np.nan, 50,99],
'Salary': [217, np.nan, 262, 352, 570, np.nan]}
df = pd.DataFrame(data)
print(df)
cond1 = (df['Age'].isnull()) & (df['Salary'].isnull())
if cond1 is False:
df['Age'] = df['Age'].fillna(0)
df['Salary'] = df['Salary'].fillna(0)
print(df)
You can just assign it with update
c = ['Age','Salary']
df.update(df.loc[~df[c].isna().all(1),c].fillna(0))
df
Out[341]:
Age Salary
0 0.0 217.0
1 NaN NaN
2 22.0 262.0
3 0.0 352.0
4 50.0 570.0
5 99.0 0.0
c1 = df['Age'].isna()
c2 = df['Salary'].isna()
df[np.c_[c1 & ~c2, ~c1 & c2]]=0
df
Age Salary
0 0.0 217.0
1 NaN NaN
2 22.0 262.0
3 0.0 352.0
4 50.0 570.0
5 99.0 0.0
tmp=df.loc[(df['Age'].isna() & df['Salary'].isna())]
df.fillna(0,inplace=True)
df.loc[tmp.index]=np.nan
This might be a bit less sophisticated than the other answers but worked for me:
I first save the row(s) containing both Nan values at the same time
then fillna the original df as per normal
then set np.nan back to the location where we saved both rows containing Nan at the same time
Get the rows that are all nulls and use where to exclude them during the fill:
bools = df.isna().all(axis = 1)
df.where(bools, df.fillna(0))
Age Salary
0 0.0 217.0
1 NaN NaN
2 22.0 262.0
3 0.0 352.0
4 50.0 570.0
5 99.0 0.0
Your if statement won't work because you need to check each row for True or False; cond1 is a series, and cannot be compared correctly to False (it will just return False, which is not entirely true), there can be multiple False and True in the series.
An inefficient way would be to traverse the rows:
for row, index in zip(cond1, df.index):
if not row:
df.loc[index] = df.loc[index].fillna(0)
apart from the inefficiency, you are keeping track of index positions; the pandas options try to abstract the process while being quite efficient, since the looping is in C
I am new to Python and lost in the way to approach this problem: I have a dataframe where the information I need is mostly grouped in layers of 2,3 and 4 rows. Each group has a different ID in one of the columns. I need to create another dataframe where the groups of rows are now a single row, where the information is unstacked in more columns. Later I can drop unwanted/redundant columns.
I think I need to iterate through the dataframe rows and filter for each ID unstacking the rows into a new dataframe. I cannot obtain much from unstack or groupby functions. Is there a easy function or combination that can make this task?
Here is a sample of the dataframe:
2_SH1_G8_D_total;Positions tolerance d [z] ;"";0.000; ;0.060;"";0.032;0.032;53%
12_SH1_G8_D_total;Positions tolerance d [z] ;"";-58.000;"";"";"";---;"";""
12_SH1_G8_D_total;Positions tolerance d [z] ;"";-1324.500;"";"";"";---;"";""
12_SH1_G8_D_total;Positions tolerance d [z] ;"";391.000;"";"";"";390.990;"";""
13_SH1_G8_D_total;Flatness;"";0.000; ;0.020;"";0.004;0.004;20%
14_SH1_G8_D_total;Parallelism tolerance ;"";0.000; ;0.030;"";0.025;0.025;84%
15_SH1_B1_B;Positions tolerance d [x y] ;"";0.000; ;0.200;"";0.022;0.022;11%
15_SH1_B1_B;Positions tolerance d [x y] ;"";265.000;"";"";"";264.993;"";""
15_SH1_B1_B;Positions tolerance d [x y] ;"";1502.800;"";"";"";1502.792;"";""
15_SH1_B1_B;Positions tolerance d [x y] ;"";-391.000;"";"";"";---;"";""
The original dataframe has information in 4 rows, but not always. Ending dataframe should have only one row per Id occurrence, with all the info in the columns.
So far, with help, I managed to run this code:
with open(path, newline='') as datafile:
data = csv.reader(datafile, delimiter=';')
for row in data:
tmp.append(row)
# Create data table joining data with the same GAT value, GAT is the ID I need
Data = []
Data.append(tmp[0])
GAT = tmp[0][0]
j = 0
counter = 0
for i in range(0,len(tmp)):
if tmp[i][0] == GAT:
counter = counter + 1
if counter == 2:
temp=(tmp[i][5],tmp[i][7],tmp[i][8],tmp[i][9])
else:
temp = (tmp[i][3], tmp[i][7])
Data[j].extend(temp)
else:
Data.append(tmp[i])
GAT = tmp[i][0]
j = j + 1
# for i in range(0,len(Data)):
# print(Data[i])
with open('output.csv', 'w', newline='') as outputfile:
writedata = csv.writer(outputfile, delimiter=';')
for i in range(0, len(Data)):
writedata.writerow(Data[i]);
But is not really using pandas, which probably will give me more power handling the data. In addition, this open() commands have troubles with the non-ascii characters I am unable to solve.
Is there a more elegant way using pandas?
So basically you're doing a "partial transpose". Is this what you want (referenced from this answer)?
Sample Data
With unequal number of rows per line
ID col1 col2
0 A 1.0 2.0
1 A 3.0 4.0
2 B 5.0 NaN
3 B 7.0 8.0
4 B 9.0 10.0
5 B NaN 12.0
Code
import pandas as pd
import io
# read df
df = pd.read_csv(io.StringIO("""
ID col1 col2
A 1 2
A 3 4
B 5 nan
B 7 8
B 9 10
B nan 12
"""), sep=r"\s{2,}", engine="python")
# solution
g = df.groupby('ID').cumcount()
df = df.set_index(['ID', g]).unstack().sort_index(level=1, axis=1)
df.columns = [f'{a}_{b+1}' for a, b in df.columns]
Result
print(df)
col1_1 col2_1 col1_2 col2_2 col1_3 col2_3 col1_4 col2_4
ID
A 1.0 2.0 3.0 4.0 NaN NaN NaN NaN
B 5.0 NaN 7.0 8.0 9.0 10.0 NaN 12.0
Explanation
After the .set_index(["ID", g]) step, the dataset becomes
col1 col2
ID
A 0 1.0 2.0
1 3.0 4.0
B 0 5.0 NaN
1 7.0 8.0
2 9.0 10.0
3 NaN 12.0
where the multi-index is perfect for df.unstack().
Have a df of readings as follows:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randint(1000, size=100), index=range(100), columns = ['reading'])
Want to find the greatest rise and the greatest fall for each row based on its index, which theoretically may be achieved using the formula...
How can this be coded?
Tried:
df.assign(gr8Rise=df.rolling(df.index).apply(lambda x: x[-1]-x[0], raw=True).max())
...and failed with ValueError: window must be an integer
UPDATE: Based on #jezrael dataset the output for gr8Rise is expected as follows:
Use:
np.random.seed(2019)
df = pd.DataFrame(np.random.randint(100, size=10), index=range(10), columns = ['reading'])
df['gr8Rise'] = [df['reading'].rolling(x).apply(lambda x: x[0]-x[-1], raw=True).max()
for x in range(1, len(df)+1)]
df.loc[0, 'gr8Rise']= np.nan
print (df)
reading gr8Rise
0 72 NaN
1 31 41.0
2 37 64.0
3 88 59.0
4 62 73.0
5 24 76.0
6 29 72.0
7 15 57.0
8 12 60.0
9 16 56.0
calculate the mean of the values in one row according it's label:
A = [1,2,3,4,5,6,7,8,9,10]
B = [0,0,0,0,0,1,1,1,1, 1]
Result = pd.DataFrame(data=[A, B])
I want the output is: 0->3; 1-> 7.8
pandas has the groupby function, but I don't know how to implement this. Thanks
This is simple groupby problem ...
Result=Result.T
Result.groupby(Result[1])[0].mean()
Out[372]:
1
0 3
1 8
Name: 0, dtype: int64
Firstly, it sounds like you want to label the index:
In [11]: Result = pd.DataFrame(data=[A, B], index=['A', 'B'])
In [12]: Result
Out[12]:
0 1 2 3 4 5 6 7 8 9
A 1 2 3 4 5 6 7 8 9 10
B 0 0 0 0 0 1 1 1 1 1
If the index was unique you wouldn't have to do any groupby, just take the mean of each row (that's the axis=1):
In [13]: Result.mean(axis=1)
Out[13]:
A 5.5
B 0.5
dtype: float64
However, if you had multiple rows with the same label, then you'd need to groupby:
In [21]: Result2 = pd.DataFrame(data=[A, A, B], index=['A', 'A', 'B'])
In [22]: Result2.mean(axis=1)
Out[22]:
A 5.5
A 5.5
B 0.5
dtype: float64
Note: the duplicate rows (that happen to have the same mean as I lazily used the same row contents), in general we'd want to take the mean of those means:
In [23]: Result2.mean(axis=1).groupby(level=0).mean()
Out[23]:
A 5.5
B 0.5
dtype: float64
Note: .groupby(level=0) groups the rows which have the same index label.
You're making it difficult on yourself by constructing the dataframe in such a way as to put the things you want to take the mean of and the things you want to be your labels as different rows.
Option 1
groubpy
This deals with the data presented in the dataframe Result
Result.loc[0].groupby(Result.loc[1]).mean()
1
0 3
1 8
Name: 0, dtype: int64
Option 2
Overkill using np.bincount and because your grouping values are 0 and 1. I'd have a solution even if they weren't but it makes it simpler.
I wanted to use the raw lists A and B
pd.Series(np.bincount(B, A) / np.bincount(B))
0 3.0
1 8.0
dtype: float64
Option 3
Construct a series instead of a dataframe.
Again using raw lists A and B
pd.Series(A, B).mean(level=0)
0 3
1 8
dtype: int64
I want to compute expanding window statistics, but with a minimum number of periods of 3, rather than 1. That is, I want it start computing the statistic after the window of 3 values, and then include all values up until that point:
value expanding_min
------------------------
6 NaN
5 NaN
2 NaN
3 2
1 1
however, using
df['expanding_min']= df.groupby(groupby)['value'].transform(lambda x: pd.rolling_min(x, window=len(x), min_periods=3))
or
df['expanding_min']= df.groupby(groupby)['value'].transform(lambda x: pd.expanding_min(x, min_periods=3))
I get the following error:
ValueError: min_periods (3) must be <= window (1)
This works for me, changing from value to df.value:
pd.expanding_min(df.value, min_periods=3)
or
pd.rolling_min(df.value, window=len(df.value), min_periods=3)
both output:
0 NaN
1 NaN
2 2
3 2
4 1
dtype: float64
Perhaps your window is being set by some other 'value' whose length is 1? This is why pandas is giving the error message