tensorflow keras embedding lstm - tensorflow

I would like to use the Embedding layer before feeding my input data into the LSTM network I am attempting to create.. Here is the relevant part of the code:
input_step1 = Input(shape=(SEQ_LENGTH_STEP1, NR_FEATURES_STEP1),
name='input_step1')
step1_lstm = CuDNNLSTM(50,
return_sequences=True,
return_state = True,
name="step1_lstm")
out_step1, state_h_step1, state_c_step1 = step1_lstm(input_step1)
I am a bit confused regarding how I am supposed to add an Embedding layer here..
Here is the description of the Embedding layer from the documentation:
keras.layers.Embedding(input_dim,
output_dim,
embeddings_initializer='uniform',
embeddings_regularizer=None,
activity_regularizer=None,
embeddings_constraint=None,
mask_zero=False,
input_length=None)
The confusing part is that my defined Input has a sequence length and number of features defined. Writing it here again:
input_step1 = Input(shape=(SEQ_LENGTH_STEP1, NR_FEATURES_STEP1),
name='input_step1')
When defining an Embedding layer, I am pretty confused about which parameters of the Embedding function corresponds to "number of sequence" and "number of features in each time step". Can anyone guide me how I can integrate an Embedding layer to my code above?
ADDENDUM:
If I try the following:
SEQ_LENGTH_STEP1 = 5
NR_FEATURES_STEP1 = 10
input_step1 = Input(shape=(SEQ_LENGTH_STEP1, NR_FEATURES_STEP1),
name='input_step1')
emb = Embedding(input_dim=NR_FEATURES_STEP1,
output_dim=15,
input_length=NR_FEATURES_STEP1)
input_step1_emb = emb(input_step1)
step1_lstm = CuDNNLSTM(50,
return_sequences=True,
return_state = True,
name="step1_lstm")
out_step1, state_h_step1, state_c_step1 = step1_lstm(input_step1_emb)
I get the following error:
ValueError: Input 0 of layer step1_lstm is incompatible with the layer:
expected ndim=3, found ndim=4. Full shape received: [None, 5, 10, 15]
I am obviously not doing the right thing.. Is there a way to integrate Embedding into the LSTM network I am trying to attempt?

From the Keras Embedding documentation:
Arguments
input_dim: int > 0. Size of the vocabulary, i.e. maximum integer index + 1.
output_dim: int >= 0. Dimension of the dense embedding.
input_length: Length of input sequences, when it is
constant. This argument is required if you are going to connect
Flatten then Dense layers upstream (without it, the shape of the dense
outputs cannot be computed).
Therefore, from your description, I assume that:
input_dim corresponds to the vocabulary size (number of distinct words) of your dataset. For example, the vocabulary size of the following dataset is 5:
data = ["Come back Peter,",
"Come back Paul"]
output_dim is an arbitrary hyperparameter that indicates the dimension of your embedding space. In other words, if you set output_dim=x, each word in the sentence will be characterized with x features.
input_length should be set to SEQ_LENGTH_STEP1 (an integer indicating the length of each sentence), assuming that all the sentences have the same length.
The output shape of an embedding layer is (batch_size, input_length, output_dim).
Further notes regarding the addendum:
team_in_step1 is undefined.
Assuming that your first layer is an Embedding layer, the expected shape of the input tensor input_step1 is (batch_size, input_length):
input_step1 = Input(shape=(SEQ_LENGTH_STEP1,),
name='input_step1')
Each integer in this tensor corresponds to a word.
As mentioned above, the embedding layer could be instantiated as follows:
emb = Embedding(input_dim=VOCAB_SIZE,
output_dim=15,
input_length=SEQ_LENGTH_STEP1)
where VOCAB_SIZE is the size of your vocabulary.
This answer contains a reproducible example that you might find useful.

Related

In tf.keras.layers.Embedding, why it is important to know the size of dictionary?

Same as the title, in tf.keras.layers.Embedding, why it is important to know the size of dictionary as input dimension?
Because internally, the embedding layer is nothing but a matrix of size vocab_size x embedding_size. It is a simple lookup table: row n of that matrix stores the vector for word n.
So, if you have e.g. 1000 distinct words, your embedding layer needs to know this number in order to store 1000 vectors (as a matrix).
Don't confuse the internal storage of a layer with its input or output shape.
The input shape is (batch_size, sequence_length) where each entry is an integer in the range [0, vocab_size[. For each of these integers the layer will return the corresponding row (which is a vector of size embedding_size) of the internal matrix, so that the output shape becomes (batch_size, sequence_length, embedding_size).
In such setting, the dimensions/shapes of the tensors are the following:
The input tensor has size [batch_size, max_time_steps] such that each element of that tensor can have a value in the range 0 to vocab_size-1.
Then, each of the values from the input tensor pass through an embedding layer, that has a shape [vocab_size, embedding_size]. The output of the embedding layer is of shape [batch_size, max_time_steps, embedding_size].
Then, in a typical seq2seq scenario, this 3D tensor is the input of a recurrent neural network.
...
Here's how this is implemented in Tensorflow so you can get a better idea:
inputs = tf.placeholder(shape=(batch_size, max_time_steps), ...)
embeddings = tf.Variable(shape=(vocab_size, embedding_size], ...)
inputs_embedded = tf.nn.embedding_lookup(embeddings, encoder_inputs)
Now, the output of the embedding lookup table has the [batch_size, max_time_steps, embedding_size] shape.

Getting keras LSTM layer to accept two inputs?

I'm working with padded sequences of maximum length 50. I have two types of sequence data:
1) A sequence, seq1, of integers (1-100) that correspond to event types (e.g. [3,6,3,1,45,45....3]
2) A sequence, seq2, of integers representing time, in minutes, from the last event in seq1. So the last element is zero, by definition. So for example [100, 96, 96, 45, 44, 12,... 0]. seq1 and seq2 are the same length, 50.
I'm trying to run the LSTM primarily on the event/seq1 data, but have the time/seq2 strongly influence the forget gate within the LSTM. The reason for this is I want the LSTM to tend to really penalize older events and be more likely to forget them. I was thinking about multiplying the forget weight by the inverse of the current value of the time/seq2 sequence. Or maybe (1/seq2_element + 1), to handle cases where it's zero minutes.
I see in the keras code (LSTMCell class) where the change would have to be:
f = self.recurrent_activation(x_f + K.dot(h_tm1_f,self.recurrent_kernel_f))
So I need to modify keras' LSTM code to accept multiple inputs. As an initial test, within the LSTMCell class, I changed the call function to look like this:
def call(self, inputs, states, training=None):
time_input = inputs[1]
inputs = inputs[0]
So that it can handle two inputs given as a list.
When I try running the model with the Functional API:
# Input 1: event type sequences
# Take the event integer sequences, run them through an embedding layer to get float vectors, then run through LSTM
main_input = Input(shape =(max_seq_length,), dtype = 'int32', name = 'main_input')
x = Embedding(output_dim = embedding_length, input_dim = num_unique_event_symbols, input_length = max_seq_length, mask_zero=True)(main_input)
## Input 2: time vectors
auxiliary_input = Input(shape=(max_seq_length,1), dtype='float32', name='aux_input')
m = Masking(mask_value = 99999999.0)(auxiliary_input)
lstm_out = LSTM(32)(x, time_vector = m)
# Auxiliary loss here from first input
auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)
# An abitrary number of dense, hidden layers here
x = Dense(64, activation='relu')(lstm_out)
# The main output node
main_output = Dense(1, activation='sigmoid', name='main_output')(x)
## Compile and fit the model
model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'], loss_weights=[1., 0.2])
print(model.summary())
np.random.seed(21)
model.fit([train_X1, train_X2], [train_Y, train_Y], epochs=1, batch_size=200)
However, I get the following error:
An `initial_state` was passed that is not compatible with `cell.state_size`. Received `state_spec`=[InputSpec(shape=(None, 50, 1), ndim=3)]; however `cell.state_size` is (32, 32)
Any advice?
You can't pass a list of inputs to default recurrent layers in Keras. The input_spec is fixed and the recurrent code is implemented based on single tensor input also pointed out in the documentation, ie it doesn't magically iterate over 2 inputs of same timesteps and pass that to the cell. This is partly because of how the iterations are optimised and assumptions made if the network is unrolled etc.
If you like 2 inputs, you can pass constants (doc) to the cell which will pass the tensor as is. This is mainly to implement attention models in the future. So 1 input will iterate over timesteps while the other will not. If you really like 2 inputs to be iterated like a zip() in python, you will have to implement a custom layer.
I would like to throw in a different ideas here. They don't require you to modify the Keras code.
After the embedding layer of the event types, stack the embeddings with the elapsed time. The Keras function is keras.layers.Concatenate(axis=-1). Imagine this, a single even type is mapped to a n dimensional vector by the embedding layer. You just add the elapsed time as one more dimension after the embedding so that it becomes a n+1 vector.
Another idea, sort of related to your problem/question and may help here, is 1D convolution. The convolution can happen right after the concatenated embeddings. The intuition for applying convolution to event types and elapsed time is actually 1x1 convolution. In such a way that you linearly combine the two together and the parameters are trained. Note in terms of convolution, the dimensions of the vectors are called channels. Of course, you can also convolve more than 1 event at a step. Just try it. It may or may not help.

Keras image captioning model not compiling because of concatenate layer when mask_zero=True in a previous layer

I am new to Keras and I am trying to implement a model for an image captioning project.
I am trying to reproduce the model from Image captioning pre-inject architecture (The picture is taken from this paper: Where to put the image in an image captioning generator) (but with a minor difference: generating a word at each time step instead of only generating a single word at the end), in which the inputs for the LSTM at the first time step are the embedded CNN features. The LSTM should support variable input length and in order to do this I padded all the sequences with zeros so that all of them have maxlen time steps.
The code for the model I have right now is the following:
def get_model(model_name, batch_size, maxlen, voc_size, embed_size,
cnn_feats_size, dropout_rate):
# create input layer for the cnn features
cnn_feats_input = Input(shape=(cnn_feats_size,))
# normalize CNN features
normalized_cnn_feats = BatchNormalization(axis=-1)(cnn_feats_input)
# embed CNN features to have same dimension with word embeddings
embedded_cnn_feats = Dense(embed_size)(normalized_cnn_feats)
# add time dimension so that this layer output shape is (None, 1, embed_size)
final_cnn_feats = RepeatVector(1)(embedded_cnn_feats)
# create input layer for the captions (each caption has max maxlen words)
caption_input = Input(shape=(maxlen,))
# embed the captions
embedded_caption = Embedding(input_dim=voc_size,
output_dim=embed_size,
input_length=maxlen)(caption_input)
# concatenate CNN features and the captions.
# Ouput shape should be (None, maxlen + 1, embed_size)
img_caption_concat = concatenate([final_cnn_feats, embedded_caption], axis=1)
# now feed the concatenation into a LSTM layer (many-to-many)
lstm_layer = LSTM(units=embed_size,
input_shape=(maxlen + 1, embed_size), # one additional time step for the image features
return_sequences=True,
dropout=dropout_rate)(img_caption_concat)
# create a fully connected layer to make the predictions
pred_layer = TimeDistributed(Dense(units=voc_size))(lstm_layer)
# build the model with CNN features and captions as input and
# predictions output
model = Model(inputs=[cnn_feats_input, caption_input],
outputs=pred_layer)
optimizer = Adam(lr=0.0001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-8)
model.compile(loss='categorical_crossentropy',optimizer=optimizer)
model.summary()
return model
The model (as it is above) compiles without any errors (see: model summary) and I managed to train it using my data. However, it doesn't take into account the fact that my sequences are zero-padded and the results won't be accurate because of this. When I try to change the Embedding layer in order to support masking (also making sure that I use voc_size + 1 instead of voc_size, as it's mentioned in the documentation) like this:
embedded_caption = Embedding(input_dim=voc_size + 1,
output_dim=embed_size,
input_length=maxlen, mask_zero=True)(caption_input)
I get the following error:
Traceback (most recent call last):
File "/export/home/.../py3_env/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1567, in _create_c_op
c_op = c_api.TF_FinishOperation(op_desc)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Dimension 0 in both shapes must be equal, but are 200 and 1. Shapes are [200] and [1]. for 'concatenate_1/concat_1' (op: 'ConcatV2') with input shapes: [?,1,200], [?,25,1], [] and with computed input tensors: input[2] = <1>
I don't know why it says the shape of the second array is [?, 25, 1], as I am printing its shape before the concatenation and it's [?, 25, 200] (as it should be).
I don't understand why there'd be an issue with a model that compiles and works fine without that parameter, but I assume there's something I am missing.
I have also been thinking about using a Masking layer instead of mask_zero=True, but it should be before the Embedding and the documentation says that the Embedding layer should be the first layer in a model (after the input).
Is there anything I could change in order to fix this or is there a workaround to this ?
The non-equal shape error refers to the mask rather than the tensors/inputs. With concatenate supporting masking, it need to handle mask propagation. Your final_cnn_feats doesn't have mask (None), while your embedded_caption has a mask of shape (?, 25). You can find this out by doing:
print(embedded_caption._keras_history[0].compute_mask(caption_input))
Since final_cnn_feats has no mask, concatenate will give it a all non-zero mask for proper mask propagation. While this is correct, the shape of the mask, however, has the same shape as final_cnn_feats which is (?, 1, 200) rather than (?, 1), i.e. masking all features at all time step rather than just all time step. This is where the non-equal shape error comes from ((?, 1, 200) vs (?, 25)).
To fix it, you need to give final_cnn_feats a correct/matching mask. Now I'm not familiar with your project here. One option is to apply a Masking layer to final_cnn_feats, since it is designed to mask timestep(s).
final_cnn_feats = Masking()(RepeatVector(1)(embedded_cnn_feats))
This can be correct only when not all 200 features in final_cnn_feats are zero, i.e. there is always at least one non-zero value in final_cnn_feats. With that condition, Masking layer will give a (?, 1) mask and will not mask the single time step in final_cnn_feats.

MultiClass Keras Classifier prediction output meaning

I have a Keras classifier built using the Keras wrapper of the Scikit-Learn API. The neural network has 10 output nodes, and the training data is all represented using one-hot encoding.
According to Tensorflow documentation, the predict function outputs a shape of (n_samples,). When I fitted 514541 samples, the function returned an array with shape (514541, ), and each entry of the array ranged from 0 to 9.
Since I have ten different outputs, does the numerical value of each entry correspond exactly to the result that I encoded in my training matrix?
i.e. if index 5 of my one-hot encoding of y_train represents "orange", does a prediction value of 5 mean that the neural network predicted "orange"?
Here is a sample of my model:
model = Sequential()
model.add(Dropout(0.2, input_shape=(32,) ))
model.add(Dense(21, activation='selu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
There are some issues with your question.
The neural network has 10 output nodes, and the training data is all represented using one-hot encoding.
Since your network has 10 output nodes, and your labels are one-hot encoded, your model's output should also be 10-dimensional, and again hot-encoded, i.e. of shape (n_samples, 10). Moreover, since you use a softmax activation for your final layer, each element of your 10-dimensional output should be in [0, 1], and interpreted as the probability of the output belonging to the respective (one-hot encoded) class.
According to Tensorflow documentation, the predict function outputs a shape of (n_samples,).
It's puzzling why you refer to Tensorflow, while your model is clearly a Keras one; you should refer to the predict method of the Keras sequential API.
When I fitted 514541 samples, the function returned an array with shape (514541, ), and each entry of the array ranged from 0 to 9.
If something like that happens, it must be due to a later part in your code that you do not show here; in any case, the idea would be to find the argument with the highest value from each 10-dimensional network output (since they are interpreted as probabilities, it is intuitive that the element with the highest value would be the most probable). In other words, somewhere in your code there must be something like this:
pred = model.predict(x_test)
y = np.argmax(pred, axis=1) # numpy must have been imported as np
which will give an array of shape (n_samples,), with each y an integer between 0 and 9, as you report.
i.e. if index 5 of my one-hot encoding of y_train represents "orange", does a prediction value of 5 mean that the neural network predicted "orange"?
Provided that the above hold, yes.

autocorrelation of the input in tensorflow/keras

I have a 1D input signal. I want to compute autocorrelation as the part of the neural net for further use inside the network.
I need to perform convolution of input with input itself.
To perform convolution in keras custom layer/ tensorflow. We need the following parameters
data shape is "[batch, in_height, in_width, in_channels]",
filter shape is "[filter_height, filter_width, in_channels, out_channels]
There is no batch present in filter shape, which needs to be input in my case
TensorFlow now has an auto_correlation function. It should be in release 1.6. If you build from source you can use it right now (see e.g. the github code).
Here is a possible solution.
By self convolution, I understood a regular convolution where the filter is exactly the same as the input (if it's not that, sorry for my misunderstanding).
We need a custom function for that, and a Lambda layer.
At first I used padding = 'same' which brings outputs with the same length as the inputs. I'm not sure about what output length you want exactly, but if you want more, you should add padding yourself before doing the convolution. (In the example with length 7, for a complete convolution from one end to another, this manual padding would include 6 zeros before and 6 zeros after the input length, and use padding = 'valid'. Find the backend functions here)
Working example - Input (5,7,2)
from keras.models import Model
from keras.layers import *
import keras.backend as K
batch_size = 5
length = 7
channels = 2
channels_batch = batch_size*channels
def selfConv1D(x):
#this function unfortunately needs to know previously the shapes
#mainly because of the for loop, for other lines, there are workarounds
#but these workarounds are not necessary since we'll have this limitation anyway
#original x: (batch_size, length, channels)
#bring channels to the batch position:
x = K.permute_dimensions(x,[2,0,1]) #(channels, batch_size, length)
#suppose channels are just individual samples (since we don't mix channels)
x = K.reshape(x,(channels_batch,length,1))
#here, we get a copy of x reshaped to match filter shapes:
filters = K.permute_dimensions(x,[1,2,0]) #(length, 1, channels_batch)
#now, in the lack of a suitable available conv function, we make a loop
allChannels = []
for i in range (channels_batch):
f = filters[:,:,i:i+1]
allChannels.append(
K.conv1d(
x[i:i+1],
f,
padding='same',
data_format='channels_last'))
#although channels_last is my default config, I found this bug:
#https://github.com/fchollet/keras/issues/8183
#convolution output: (1, length, 1)
#concatenate all results as samples
x = K.concatenate(allChannels, axis=0) #(channels_batch,length,1)
#restore the original form (passing channels to the end)
x = K.reshape(x,(channels,batch_size,length))
return K.permute_dimensions(x,[1,2,0]) #(batch_size, length, channels)
#input data for the test:
x = np.array(range(70)).reshape((5,7,2))
#little model that just performs the convolution
inp= Input((7,2))
out = Lambda(selfConv1D)(inp)
model = Model(inp,out)
#checking results
p = model.predict(x)
for i in range(5):
print("x",x[i])
print("p",p[i])
You can just use tf.nn.conv3d by treating the "batch size" as "depth":
# treat the batch size as depth.
data = tf.reshape(input_data, [1, batch, in_height, in_width, in_channels])
kernel = [filter_depth, filter_height, filter_width, in_channels, out_channels]
out = tf.nn.conv3d(data, kernel, [1,1,1,1,1], padding='SAME')