import numpy as np
import pandas as pd
data = [[30, 19, 6], [12, 23, 14], [8, 18, 20]]
df = pd.DataFrame(data = data, index = ['A', 'B', 'C'], columns = ['Bulgary', 'Robbery', 'Car Theft'])
df
I get the following:
Bulgary
Robbery
Car Theft
A
30
19
6
B
12
23
14
C
8
18
20
I would like to assign:
df['Total'] = df['Bulgary'] + df['Robbery'] + df['Car Theft']
But does this operation have to be done manually? I am looking for a function that can handle conveniently.
#pseudocode
#df['Total'] = df.Some_Column_Adding_Function([0:3])
#df['Total'] == df['Bulgary'] + df['Robbery'] + df['Car Theft'] returns True
Similarly, how do I add across rows?
Use sum:
df['Total'] = df.sum(axis=1)
Or if you want subset of columns:
df['Total'] = df[df.columns[0:3]].sum(axis=1)
# or df['Total'] = df[['Bulgary', 'Robbery', 'Car Theft']].sum(axis=1)
I'm attempting to plot stock market trades against a plot of the particular stock using mplfinance.plot(). I keep record of all my trades using jstock which uses as CSV file:
"Code","Symbol","Date","Units","Purchase Price","Current Price","Purchase Value","Current Value","Gain/Loss Price","Gain/Loss Value","Gain/Loss %","Broker","Clearing Fee","Stamp Duty","Net Purchase Value","Net Gain/Loss Value","Net Gain/Loss %","Comment"
"ASO","Academy Sports and Outdoors, Inc.","Sep 13, 2021","25.0","45.85","46.62","1146.25","1165.5","0.769999999999996","19.25","1.6793893129770994","0.0","0.0","0.0","1146.25","19.25","1.6793893129770994",""
"ASO","Academy Sports and Outdoors, Inc.","Aug 26, 2021","15.0","41.3","46.62","619.5","699.3","5.32","79.79999999999995","12.881355932203384","0.0","0.0","0.0","619.5","79.79999999999995","12.881355932203384",""
"ASO","Academy Sports and Outdoors, Inc.","Jun 3, 2021","10.0","37.48","46.62","374.79999999999995","466.2","9.14","91.40000000000003","24.386339381003214","0.0","0.0","0.0","374.79999999999995","91.40000000000003","24.386339381003214",""
"RMBS","Rambus Inc.","Nov 24, 2021","2.0","26.99","26.99","53.98","53.98","0.0","0.0","0.0","0.0","0.0","0.0","53.98","0.0","0.0",""
I can get this data easily enough using
myportfolio = pd.read_csv(PORTFOLIO_LOCATION, parse_dates=[2])
But I need to create individual lists for each trade that match the day-by-day stock price:
Date,High,Low,Open,Close,Volume,Adj Close
2020-12-01,17.020000457763672,16.5,16.799999237060547,16.8799991607666,990900,16.8799991607666
2020-12-02,17.31999969482422,16.290000915527344,16.65999984741211,16.40999984741211,1200500,16.40999984741211
and I have a normal DataFrame containing this. So far this is what I have:
for i in myportfolio.groupby("Code"):
(code, j) = i
if code == "ASO": # just testing it against one stock
simp = pd.DataFrame(columns=["Date", "Units", "Price"],
data=j[["Date", "Units", "Purchase Price"]].values, index=j[["Date"]])
df = pd.read_csv("ASO-2020-12-01-2021-12-01.csv", index_col=0, parse_dates=True)
# df.lookup(simp["Date"])
df.insert(0, 'row_num', range(0,len(df)))
k = df.loc[simp["Date"]]['row_num']
trades = []
for index, m in k.iteritems():
t = np.zeros((df.shape[0], 1))
t.fill(np.nan)
t[m] = simp[index]["Price"]
trades.append(t.to_list())
But I receive a KeyError: Timestamp('2021-09-17 00:00:00')
Any ideas of how to fix this?
Addendum 1:
import pandas as pd
trade_data = [['ASO', '5/5/21', 10], ['ASO', '5/6/21', 12], ['RBLX', '5/7/21', 15]]
trade_df = pd.DataFrame(trade_data, columns = ['Code', 'Date', 'Price'])
trade_df['Date'] = pd.to_datetime(trade_df['Date'])
trade_df
Code Date Price
0 ASO 2021-05-05 10
1 ASO 2021-05-07 12
2 RBLX 2021-05-07 15
aso_data = [['5/5/21', 12, 5, 10, 7], ['5/6/21', 15, 7, 13, 8], ['5/7/21', 17, 10, 15, 11]]
aso_df = pd.DataFrame(aso_data, columns = ['Date', 'High', 'Low', 'Open', 'Close'])
aso_df['Date'] = pd.to_datetime(aso_df['Date'])
aso_df
Date High Low Open Close
0 2021-05-05 12 5 10 7
1 2021-05-06 15 7 13 8
2 2021-05-07 17 10 15 11
So I want to create two NumPy arrays for ASO {one for each trade) and one for the RBLX trade. For ASO I should have two NumPy arrays that looks like [10, Nan, Nan] and [NaN, NaN, 12].
Do you want a list of lists right?
There is no need to loop.
df_list = df.values.tolist()
just in case another novice such as myself surfs in with a similar problem.
for i in myportfolio.groupby(["Code"]):
(code, j) = i
if code == "ASO": # just testing it against one stock
df = pd.read_csv("ASO-2020-12-01-2021-12-01.csv", index_col=0, parse_dates=True)
df.insert(0, 'row_num', range(0,len(df)))
k = df.loc[j["Date"]]['row_num']
trades = []
for index, m in j.iterrows():
t = np.zeros((df.shape[0], 1))
t.fill(np.nan)
t[int(df.loc[m["Date"]]['row_num'])] = m["Purchase Price"]
asplot = mpf.make_addplot(t, type="scatter", color='red', marker="D")
trades.append(asplot)
mpf.plot(df, type='candle', addplot=trades)
produced an okay graph showing my entry points. good luck
I am trying to write a function that loops through a pandas dataframe and compares if column1 > column2, if so appends 1 to a list, which is then returned.
Importing finance data from yahoo finance, calculating 2 Std and assigning to column upper and lower, and the moving average.
import pandas as pd
import pandas_datareader as web
import matplotlib.pyplot as plt
%matplotlib inline
from datetime import datetime
import numpy as np
end = datetime(2021, 1, 16)
start = datetime(2020 , 1, 16)
symbols = ['ETH-USD']
stock_df = web.get_data_yahoo(symbols, start, end)
period = 20
# Simple Moving Average
stock_df['SMA'] = stock_df['Close'].rolling(window=period).mean()
# Standard deviation
stock_df['STD'] = stock_df['Close'].rolling(window=period).std()
# Upper Bollinger Band
stock_df['Upper'] = stock_df['SMA'] + (stock_df['STD'] * 2)
# Lower Bollinger Band
stock_df['Lower'] = stock_df['SMA'] - (stock_df['STD'] * 2)
# List of columns
column_list = ['Close', 'SMA', 'Upper', 'Lower']
stock_df[column_list].plot(figsize=(12.2,6.4)) #Plot the data
plt.title('ETH-USD')
plt.ylabel('USD Price ($)')
plt.show();
#Create a new data frame, Period for calculation, removes NAN's
bolldf = stock_df[period-1:]
#Show the new data frame
bolldf
Function, Loop through column rows and compare, append df['Close'][0] to buy/sell signal if condition is met.
def signal(df):
buy_signal = []
sell_signal = []
for i in range(len(df['Close'])):
if df['Close'][i] > df['Upper'][i]:
buy_signal.append(1)
return buy_signal
buy_signal = signal(bolldf)
buy_signal
Info about the Error:
KeyError: 0
During handling of the above exception, another exception occurred:
---> 12 buy_signal = greaterthan(stock_df)
KeyError: 0
During handling of the above exception, another exception occurred:
11
---> 12 buy_signal = greaterthan(stock_df)
13
----> 8 if bolldf['Close'][i] > bolldf['Open'][i]:
KeyError: 0
When i attempt this function on the columns df['Upper'] > df['Lower], or df['SMA'] < df['Lower'] for example it works as expected, its only when using the columns from the original data that it does not work.
Any help would be amazing. Thank you.
Since it is a multi-index, the columns must also be specified in the multi-index format. You can check the contents of the columns with bolldf.columns, and you can get them by modifying as follows.
bolldf.columns
MultiIndex([('Adj Close', 'ETH-USD'),
( 'Close', 'ETH-USD'),
( 'High', 'ETH-USD'),
( 'Low', 'ETH-USD'),
( 'Open', 'ETH-USD'),
( 'Volume', 'ETH-USD'),
( 'SMA', ''),
( 'STD', ''),
( 'Upper', ''),
( 'Lower', '')],
names=['Attributes', 'Symbols'])
def signal(df):
buy_signal = []
sell_signal = []
for i in range(len(df[('Close','ETH-USD')])):
if df[('Close','ETH-USD')][i] > df[('Upper','')][i]:
buy_signal.append(1)
return buy_signal
buy_signal = signal(bolldf)
I have a dataframe with a start time and the length of operation. I'm trying to figure out out to add the length (in minutes) to the start time in order to figure out the end time of the session. I've run a few different variations of the same general idea and keep getting the same error, "unsupported type for timedelta minutes component: Series". The code extract is below:
data= {'Name': ['John', 'Peter'],
'Start' : [2, 2],
'Length': [120, 90],
}
df = pd.DataFrame.from_records(data)
df['Start'] = pd.to_datetime(df['Start'])
df['Length'] = pd.to_datetime(df['Length'])
df["tdiffinmin"] = df['Start'].apply(lambda x: x + pd.DateOffset(minutes = df["Length"]))
Ive also tried the follow as other methods of doing this math and keep getting similar errors.
df["tdiffinmin"] = df['Start'].apply(lambda x: x -pd.DateOffset(minutes = df["Length"]))
df["tdiffinmin"] = (df['Start']. + timedelta(minutes = df["Length"])).dt.total_seconds() / 60
df['tdiffinmin'] = df['Start'] - pd.DateOffset(minutes = df["Length"])
The full code reads from a data set (excel sheet or CSV), populates a Dataframe, and this is some of the math I am doing. Originally it was done with Start and Stop times, so I know something similar is possible. In the dataset, Length is in minutes and Start is a date and time, so datetime is necessary.
You should convert Length into timedelta, not datetime:
df['Start'] = pd.to_datetime(df['Start'])
df['Length'] = pd.to_timedelta(df['Length'], unit='min')
df['tdiffinmin'] = df['Start'] + df['Length']
Output:
Length Name Start tdiffinmin
0 02:00:00 John 1970-01-01 00:00:00.000000002 1970-01-01 02:00:00.000000002
1 01:30:00 Peter 1970-01-01 00:00:00.000000002 1970-01-01 01:30:00.000000002