Based on this post, I tried to create another model, where I'm adding both categorical and continous variables.
Please find the code below:
from __future__ import print_function
import pandas as pd;
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
if __name__ == '__main__':
# 1 categorical input feature and a binary output
df = pd.DataFrame({'cat2': np.array(['o', 'm', 'm', 'c', 'c', 'c', 'o', 'm', 'm', 'm']),
'num1': np.random.rand(10),
'label': np.array([0, 0, 1, 1, 0, 0, 1, 0, 1, 1])})
encoder = LabelEncoder()
encoder.fit(df.cat2.values)
X1 = encoder.transform(df.cat2.values).reshape(-1,1)
X2 = np.array(df.num1.values).reshape(-1,1)
# X = np.concatenate((X1,X2), axis=1)
Y = np.zeros((len(df), 2))
Y[np.arange(len(df)), df.label.values] = 1
# Neural net parameters
training_epochs = 5
learning_rate = 1e-3
cardinality = len(np.unique(X))
embedding_size = 2
input_X_size = 1
n_labels = len(np.unique(Y))
n_hidden = 10
# Placeholders for input, output
cat2 = tf.placeholder(tf.int32, [None], name='cat2')
x = tf.placeholder(tf.float32, [None, 1], name="input_x")
y = tf.placeholder(tf.float32, [None, 2], name="input_y")
embed_matrix = tf.Variable(
tf.random_uniform([cardinality, embedding_size], -1.0, 1.0),
name="embed_matrix"
)
embed = tf.nn.embedding_lookup(embed_matrix, cat2)
inputs_with_embed = tf.concat([x, embedding_aggregated], axis=2, name="inputs_with_embed")
# Neural network weights
h = tf.get_variable(name='h2', shape=[inputs_with_embed, n_hidden],
initializer=tf.contrib.layers.xavier_initializer())
W_out = tf.get_variable(name='out_w', shape=[n_hidden, n_labels],
initializer=tf.contrib.layers.xavier_initializer())
# Neural network operations
#embedded_chars = tf.nn.embedding_lookup(embeddings, x)
layer_1 = tf.matmul(inputs_with_embed,h)
layer_1 = tf.nn.relu(layer_1)
out_layer = tf.matmul(layer_1, W_out)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out_layer, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
avg_cost = 0.
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost],
feed_dict={x: X2,cat2:X1, y: Y})
print("Optimization Finished!")
But I'm getting the following error. It seems I'm not concatenating the continous variable and embedding properly. But I'm not understanding how to fix it.
Please if someone can please guide me.
ValueError: Shape must be at least rank 3 but is rank 2 for 'inputs_with_embed_2' (op: 'ConcatV2') with input shapes: [?,1], [?,2], [] and with computed input tensors: input[2] = <2>.
Thanks!
If by embedding_agregated you mean embed (probably typo)
The error is that there is no axis=2 in your case , it should be axis=1
inputs_with_embed = tf.concat([x, embed], axis=1, name="inputs_with_embed")
embed has a shape [None, embedding_dimension] and x has a shape [None, 1]
They are both 2D tensors, so you have access to axis=0 or axis=1 (indexing at 0 not 1), therefore to have your input_with_embed of shape [None, embedding_dimension+1] you need to concat on the axis=1
Related
I am new to tensorflow and I am a slow learner. After successfully compiling the model and get the accuracy I want to print the prediction variable but I dont know how to do it.
My dataset is multivariate feature with only one output. The output contains only 1, 0 ,-1 so I made one hot encoder for the output. I finished compiling the model and looking for computing prediction on tensorflow online, however I didnt find a good solution base on my question.
The precisionCalculate function is to compute precision on each column on test data since the trian_y and test_y after one hot encode becomes [1,0,0],[0,1,0],[0,0,1].
I have tried
y_pred = sess.run(tf.argmax(y, 1), feed_dict={X: test_x, y: test_y})
but it turns out y_pred is exactly the same as my test_y
Here is my full code example.
import tensorflow as tf
import pandas as pd
import numpy as np
import tensorflow.contrib.rnn
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, LabelEncoder
import pdb
np.set_printoptions(threshold=np.inf)
def precisionCalculate(pred_y, test_y):
count = pred_y + test_y
firstZero = len(count[count==0])
countFour = len(count[count == 4])
precision1 = firstZero / len(pred_y[pred_y==0] )
precision3 = countFour / len(pred_y[pred_y==2])
pdb.set_trace()
return precision1, precision3
df = pd.read_csv('new_df.csv', skiprows=[0], header=None)
df.drop(columns=[0,1], inplace=True)
df.columns = [np.arange(0, df.shape[1])]
df[0] = df[0].shift(-1)
#parameters
time_steps = 1
inputs = df.shape[1]
outputs = 3
#remove nan as a result of shift values
df = df.iloc[:-1, :]
#convert to numpy
df = df.values
train_number = 30276 #start date from 1018
train_x = df[: train_number, 1:]
test_x = df[train_number:, 1:]
train_y = df[:train_number, 0]
test_y = df[train_number:, 0]
#data pre-processing
#x y split
#scale
scaler = MinMaxScaler(feature_range=(0,1))
train_x = scaler.fit_transform(train_x)
test_x = scaler.fit_transform(test_x)
#reshape into 3d array
train_x = train_x[:, None, :]
test_x = test_x[:, None, :]
#one-hot encode the outputs
onehot_encoder = OneHotEncoder()
#encoder = LabelEncoder()
max_ = train_y.max()
max2 = test_y.max()
train_y = (train_y - max_) * (-1)
test_y = (test_y - max2) * (-1)
encode_categorical = train_y.reshape(len(train_y), 1)
encode_categorical2 = test_y.reshape(len(test_y), 1)
train_y = onehot_encoder.fit_transform(encode_categorical).toarray()
test_y = onehot_encoder.fit_transform(encode_categorical2).toarray()
print(train_x.shape, train_y.shape, test_x.shape, test_y.shape)
#model parameters
learning_rate = 0.001
epochs = 100
batch_size = int(train_x.shape[0]/10)
length = train_x.shape[0]
display = 100
neurons = 100
tf.reset_default_graph()
X = tf.placeholder(tf.float32, [None, time_steps, 90],name='x')
y = tf.placeholder(tf.float32, [None, outputs],name='y')
#LSTM cell
cell = tf.contrib.rnn.BasicLSTMCell(num_units = neurons, activation = tf.nn.relu)
cell_outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
# pass into Dense layer
stacked_outputs = tf.reshape(cell_outputs, [-1, neurons])
out = tf.layers.dense(inputs=stacked_outputs, units=outputs)
# squared error loss or cost function for linear regression
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=out, labels=y))
# optimizer to minimize cost
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
accuracy = tf.metrics.accuracy(labels = tf.argmax(y, 1), predictions = tf.argmax(out, 1), name = "accuracy")
precision = tf.metrics.precision(labels=tf.argmax(y, 1), predictions=tf.argmax(out, 1), name="precision")
recall = tf.metrics.recall(labels=tf.argmax(y, 1), predictions=tf.argmax(out, 1),name="recall")
f1 = 2 * accuracy[1] * recall[1] / ( precision[1] + recall[1] )
with tf.Session() as sess:
# initialize all variables
tf.global_variables_initializer().run()
tf.local_variables_initializer().run()
# Train the model
for steps in range(epochs):
mini_batch = zip(range(0, length, batch_size), range(batch_size, length+1, batch_size))
epoch_loss = 0
i = 0
# train data in mini-batches
for (start, end) in mini_batch:
sess.run(training_op, feed_dict = {X: train_x[start:end,:,:], y: train_y[start:end,:]})
# print training performance
if (steps+1) % display == 0:
# evaluate loss function on training set
loss_fn = loss.eval(feed_dict = {X: train_x, y: train_y})
print('Step: {} \tTraining loss: {}'.format((steps+1), loss_fn))
# evaluate model accuracy
acc, prec, recall, f1 = sess.run([accuracy, precision, recall, f1],feed_dict = {X: test_x, y: test_y})
y_pred = sess.run(tf.argmax(y, 1), feed_dict={X: train_x, y: train_y})
test_y_alter = np.argmax(test_y, axis=1)
#print(test_y_alter)
print(precisionCalculate(y_pred, test_y_alter))
print(y_pred)
#prediction = y_pred.eval(feed_dict={X: train_x, y: test_y})
#print(prediction)
print('\nEvaluation on test set')
print('Accuracy:', acc[1])
print('Precision:', prec[1])
print('Recall:', recall[1])
print('F1 score:', f1)
I think you should use the output of your model instead of the label (y) in tf.argmax.
Here is my code in order to print prediction of the model:
pred_y = tf.Print(tf.argmax(score, 1), [tf.argmax(score, 1)], message="prediction:)
pred_y.eval()
In the above code, score means the probability output of your model.
This post is related to the following question. The code above is taken from the accepted answer.
The program itself works fine as is, but if I only changed the values of the data provided from
df = pd.DataFrame({'Temperature': [183, 10.7, 24.3, 10.7],
'Weight': [8, 11.2, 14, 11.2],
'Size': [3.97, 7.88, 11, 7.88],
'Property': [0,1,2,0]})
to
df = pd.DataFrame({'Temperature': [0,0,0,0],
'Weight': [1,2,3,4],
'Size': [1,2,3,4],
'Property': [1,1,1,1]})
I receive the following error while executing the code
ValueError: Cannot feed value of shape (1, 1) for Tensor
'Placeholder_1:0', which has shape '(?, 3)'
Nothing really changed structurally, so I am really confused by this error. The odd thing is that changing the values of the data may or may not trigger this issue. I've tried various TF versions including the latest and the same issue always occurs.
Does anybody know what am I missing? The full code example follows.
import tensorflow as tf
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
df = pd.DataFrame({'Temperature': [183, 10.7, 24.3, 10.7],
'Weight': [8, 11.2, 14, 11.2],
'Size': [3.97, 7.88, 11, 7.88],
'Property': [0,1,2,0]})
df.Property = df.Property.shift(-1)
print ( df.head() )
# parameters
time_steps = 1
inputs = 3
outputs = 3
df = df.iloc[:-1,:]
df = df.values
train_X = df[:, 1:]
train_y = df[:, 0]
scaler = MinMaxScaler(feature_range=(0, 1))
train_X = scaler.fit_transform(train_X)
train_X = train_X[:,None,:]
onehot_encoder = OneHotEncoder()
encode_categorical = train_y.reshape(len(train_y), 1)
train_y = onehot_encoder.fit_transform(encode_categorical).toarray()
learning_rate = 0.001
epochs = 500
batch_size = int(train_X.shape[0]/2)
length = train_X.shape[0]
display = 100
neurons = 100
tf.reset_default_graph()
X = tf.placeholder(tf.float32, [None, time_steps, inputs])
y = tf.placeholder(tf.float32, [None, outputs])
cell = tf.contrib.rnn.BasicLSTMCell(num_units=neurons, activation=tf.nn.relu)
cell_outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
stacked_outputs = tf.reshape(cell_outputs, [-1, neurons])
out = tf.layers.dense(inputs=stacked_outputs, units=outputs)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(
labels=y, logits=out))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
accuracy = tf.metrics.accuracy(labels = tf.argmax(y, 1),
predictions = tf.argmax(out, 1),
name = "accuracy")
precision = tf.metrics.precision(labels=tf.argmax(y, 1),
predictions=tf.argmax(out, 1),
name="precision")
recall = tf.metrics.recall(labels=tf.argmax(y, 1),
predictions=tf.argmax(out, 1),
name="recall")
f1 = 2 * accuracy[1] * recall[1] / ( precision[1] + recall[1] )
with tf.Session() as sess:
tf.global_variables_initializer().run()
tf.local_variables_initializer().run()
for steps in range(epochs):
mini_batch = zip(range(0, length, batch_size),
range(batch_size, length+1, batch_size))
for (start, end) in mini_batch:
sess.run(training_op, feed_dict = {X: train_X[start:end,:,:],
y: train_y[start:end,:]})
if (steps+1) % display == 0:
loss_fn = loss.eval(feed_dict = {X: train_X, y: train_y})
print('Step: {} \tTraining loss: {}'.format((steps+1), loss_fn))
acc, prec, recall, f1 = sess.run([accuracy, precision, recall, f1],
feed_dict = {X: train_X, y: train_y})
print('\nEvaluation on training set')
print('Accuracy:', acc[1])
print('Precision:', prec[1])
print('Recall:', recall[1])
print('F1 score:', f1)
As #Lescurel rightly pointed out, in a classification setting, the variable output should reflect the number of classes in the target variable.
Whereas in a regression setting, it'll reflect the number of columns of the target variables (assuming we are predicting more than one variable).
So given the sample input data:
df = pd.DataFrame({'Temperature': [1,2,3,4,5],
'Weight': [2,4,6,8,10],
'Size': [9,24,9,9,9],
'Property': [0,0,0,0,1]})
The number of target classes is 2. Hence output = 2.
Note: Your posted code in https://paste.ubuntu.com/p/tmXgQfm8GB/ works well for me.
Just observed that your target variable Property is the last column of the DataFrame.
Temperature Weight Size Property
0 1 2 9 0.0
1 2 4 24 0.0
2 3 6 9 0.0
3 4 8 9 1.0
4 5 10 9 NaN
Modify your code as follows, instead of having:
# X_y_split
train_X = df[:, 1:]
train_y = df[:, 0]
change it to:
# X_y_split
train_X = df[:, :-1]
train_y = df[:, -1]
What you have here is a classification network: It takes inputs, or features (Temperature, Weight and Size), and classify them into one of your classes : 0, 1 or 2. (Property field)
When you modified the original dataset, you modified the number of classes : from 3 (0,1,2), you went to 1. (1).
For the code to work, you just need to modify the parameters section of your code so it fits your dataset.
# parameters
time_steps = 1
inputs = 3
outputs = 1
Note : In this case, I find the the term outputs is a bit vague. I would have used something like nb_classes
This question is related to the starting one posted here.
The problem is to classify rows so that the classification of row number i can rely on the data for all the previous rows including class membership. The linked post contains an answer which is posted bellow.
For the sake of experimentation I've used a set of randomly crafted data, where the classifying property is a 0,1 uniform random variable.
What strikes me is that the loss of the model in the above example is really low and the accuracy is 99% whereas I would expect something in the 50% range.
So I am assuming that the way the model is testing the classification is leaking information somehow.
Does anybody happen to see what's the issue? What would be the proper way to evaluate the accuracy in such scenario?
import tensorflow as tf
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
from random import randint
SIZE = 100
df = pd.DataFrame({'Temperature': list(range(SIZE)),
'Weight': [randint(1,100) for _ in range(SIZE)],
'Size': [randint(1,10000) for _ in range(SIZE)],
'Property': [randint(0,1) for _ in range(SIZE)]})
df.Property = df.Property.shift(-1)
print ( df.head() )
# parameters
time_steps = 1
inputs = 3
outputs = 2
df = df.iloc[:-1,:]
df = df.values
train_X = df[:, :-1]
train_y = df[:, -1]
scaler = MinMaxScaler(feature_range=(0, 1))
train_X = scaler.fit_transform(train_X)
train_X = train_X[:,None,:]
onehot_encoder = OneHotEncoder()
encode_categorical = train_y.reshape(len(train_y), 1)
train_y = onehot_encoder.fit_transform(encode_categorical).toarray()
learning_rate = 0.001
epochs = 50000
batch_size = int(train_X.shape[0]/2)
length = train_X.shape[0]
display = 100
neurons = 100
tf.reset_default_graph()
X = tf.placeholder(tf.float32, [None, time_steps, inputs])
y = tf.placeholder(tf.float32, [None, outputs])
cell = tf.contrib.rnn.BasicLSTMCell(num_units=neurons, activation=tf.nn.relu)
cell_outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
stacked_outputs = tf.reshape(cell_outputs, [-1, neurons])
out = tf.layers.dense(inputs=stacked_outputs, units=outputs)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(
labels=y, logits=out))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
accuracy = tf.metrics.accuracy(labels = tf.argmax(y, 1),
predictions = tf.argmax(out, 1),
name = "accuracy")
precision = tf.metrics.precision(labels=tf.argmax(y, 1),
predictions=tf.argmax(out, 1),
name="precision")
recall = tf.metrics.recall(labels=tf.argmax(y, 1),
predictions=tf.argmax(out, 1),
name="recall")
f1 = 2 * accuracy[1] * recall[1] / ( precision[1] + recall[1] )
with tf.Session() as sess:
tf.global_variables_initializer().run()
tf.local_variables_initializer().run()
for steps in range(epochs):
mini_batch = zip(range(0, length, batch_size),
range(batch_size, length+1, batch_size))
for (start, end) in mini_batch:
sess.run(training_op, feed_dict = {X: train_X[start:end,:,:],
y: train_y[start:end,:]})
if (steps+1) % display == 0:
loss_fn = loss.eval(feed_dict = {X: train_X, y: train_y})
print('Step: {} \tTraining loss: {}'.format((steps+1), loss_fn))
acc, prec, recall, f1 = sess.run([accuracy, precision, recall, f1],
feed_dict = {X: train_X, y: train_y})
print('\nEvaluation on training set')
print('Accuracy:', acc[1])
print('Precision:', prec[1])
print('Recall:', recall[1])
print('F1 score:', f1)
I am new to Tensorflow and Machine Learning and trying out CNN using Tensorflow with my custom input data. But I am getting the error attached below.
The Data or Image Size is 28x28 with 15 Labels.
I am not getting the numpy reshape thing in this script or the error.
Help is highly appreciated.
import tensorflow as tf
import os
import skimage.data
import numpy as np
import random
def load_data(data_directory):
directories = [d for d in os.listdir(data_directory)
if os.path.isdir(os.path.join(data_directory, d))]
labels = []
images = []
for d in directories:
label_directory = os.path.join(data_directory, d)
file_names = [os.path.join(label_directory, f)
for f in os.listdir(label_directory)
if f.endswith(".jpg")]
for f in file_names:
images.append(skimage.data.imread(f))
labels.append(d)
print(str(d)+' Completed')
return images, labels
ROOT_PATH = "H:\Testing\TrainingData"
train_data_directory = os.path.join(ROOT_PATH, "Training")
test_data_directory = os.path.join(ROOT_PATH, "Testing")
print('Loading Data...')
images, labels = load_data(train_data_directory)
print('Data has been Loaded')
n_classes = 15
training_examples = 10500
test_examples = 4500
batch_size = 128
x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
def maxpool2d(x):
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
def neural_network_model(x):
weights = {'W_Conv1':tf.Variable(tf.random_normal([5,5,1,32])),
'W_Conv2':tf.Variable(tf.random_normal([5,5,32,64])),
'W_FC':tf.Variable(tf.random_normal([7*7*64, 1024])),
'Output':tf.Variable(tf.random_normal([1024, n_classes]))}
biases = {'B_Conv1':tf.Variable(tf.random_normal([32])),
'B_Conv2':tf.Variable(tf.random_normal([64])),
'B_FC':tf.Variable(tf.random_normal([1024])),
'Output':tf.Variable(tf.random_normal([n_classes]))}
x = tf.reshape(x, shape=[-1,28,28,1])
conv1 = conv2d(x, weights['W_Conv1'])
conv1 = maxpool2d(conv1)
conv2 = conv2d(conv1, weights['W_Conv2'])
conv2 = maxpool2d(conv2)
fc = tf.reshape(conv2, [-1, 7*7*64])
fc = tf.nn.relu(tf.matmul(fc, weights['W_FC'])+biases['B_FC'])
output = tf.matmul(fc, weights['Output'])+biases['Output']
return output
def next_batch(num, data, labels):
idx = np.arange(0 , len(data))
np.random.shuffle(idx)
idx = idx[:num]
data_shuffle = [data[ i] for i in idx]
labels_shuffle = [labels[ i] for i in idx]
return np.asarray(data_shuffle), np.asarray(labels_shuffle)
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) )
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
# OLD:
#sess.run(tf.initialize_all_variables())
# NEW:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(training_examples/batch_size)):
epoch_x, epoch_y = next_batch(batch_size, images, labels)
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of',hm_epochs,'loss:',epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:',accuracy.eval({x: images, y: labels}))
print('Training Neural Network...')
train_neural_network(x)
What am I doing wrong? What is needed to be fixed and how do I fix the shape of numpy array?
If you look closely, you'll see that you have two x placeholders:
x = tf.placeholder('float', [None, 784]) # global
...
x = tf.reshape(x, shape=[-1,28,28,1]) # in neural_network_model
One of them is in the function scope, hence not visible in train_neural_network, so tensorflow takes the one with [?, 784] shape. You should get rid of one of them.
Also note that your training data has the rank 3, i.e. [batch_size, 28, 28], so it's not directly compatible with any of those placeholders.
To feed it into the first x, take epoch_x.reshape([-1, 784]). For the second placeholder (once you make it visible), take epoch_x.reshape([-1, 28, 28, 1]).
In machine learning, it is common to represent a categorical (specifically: nominal) feature with one-hot-encoding. I am trying to learn how to use tensorflow's embedding layer to represent a categorical feature in a classification problem. I have got tensorflow version 1.01 installed and I am using Python 3.6.
I am aware of the tensorflow tutorial for word2vec, but it is not very instructive for my case. While building the tf.Graph, it uses NCE-specific weights and tf.nn.nce_loss.
I just want a simple feed-forward net as below, and the input layer to be an embedding. My attempt is below. It complains when I try to matrix multiply the embedding with the hidden layer due to shape incompatibility. Any ideas how I can fix this?
from __future__ import print_function
import pandas as pd;
import tensorflow as tf
import numpy as np
from sklearn.preprocessing import LabelEncoder
if __name__ == '__main__':
# 1 categorical input feature and a binary output
df = pd.DataFrame({'cat2': np.array(['o', 'm', 'm', 'c', 'c', 'c', 'o', 'm', 'm', 'm']),
'label': np.array([0, 0, 1, 1, 0, 0, 1, 0, 1, 1])})
encoder = LabelEncoder()
encoder.fit(df.cat2.values)
X = encoder.transform(df.cat2.values)
Y = np.zeros((len(df), 2))
Y[np.arange(len(df)), df.label.values] = 1
# Neural net parameters
training_epochs = 5
learning_rate = 1e-3
cardinality = len(np.unique(X))
embedding_size = 2
input_X_size = 1
n_labels = len(np.unique(Y))
n_hidden = 10
# Placeholders for input, output
x = tf.placeholder(tf.int32, [None, 1], name="input_x")
y = tf.placeholder(tf.float32, [None, 2], name="input_y")
# Neural network weights
embeddings = tf.Variable(tf.random_uniform([cardinality, embedding_size], -1.0, 1.0))
h = tf.get_variable(name='h2', shape=[embedding_size, n_hidden],
initializer=tf.contrib.layers.xavier_initializer())
W_out = tf.get_variable(name='out_w', shape=[n_hidden, n_labels],
initializer=tf.contrib.layers.xavier_initializer())
# Neural network operations
embedded_chars = tf.nn.embedding_lookup(embeddings, x)
layer_1 = tf.matmul(embedded_chars,h)
layer_1 = tf.nn.relu(layer_1)
out_layer = tf.matmul(layer_1, W_out)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out_layer, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
avg_cost = 0.
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost],
feed_dict={x: X, y: Y})
print("Optimization Finished!")
EDIT:
Please see below the error message:
Traceback (most recent call last):
File "/home/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/common_shapes.py", line 671, in _call_cpp_shape_fn_impl
input_tensors_as_shapes, status)
File "/home/anaconda3/lib/python3.6/contextlib.py", line 89, in __exit__
next(self.gen)
File "/home/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Shape must be rank 2 but is rank 3 for 'MatMul' (op: 'MatMul') with input shapes: [?,1,2], [2,10].
Just make your x placeholder be size [None] instead of [None, 1]