I have a fairly complex requirement for the output of one of my rules.
I have samples in a CSV file (samples.csv) with nested information like so:
region,run_id,sample_id
A,1,150
A,3,111
A,3,145
A,3,153
B,4,105
B,4,107
I have them stored in my Snakefile as a pandas dataframe.
samples = pd.read_csv("samples.csv").set_index(
["region", "run_id", "sample_id"], drop=False
)
I have a rule demultiplex, which takes in a fastq file that is a combination of all the sample_id reads for a run_id in a region
rule demultiplex:
input:
"analysis/{region}/{run}/basecalled.fastq"
What this demultiplex rule does is take in this combined fastq file and returns a fastq file for each sample_id (barcode) within that run_id.
So where I am struggling here is how to get the output to map to the input.
What I effectively want in the running example is the demultiplex rule to execute once for every valid (region, run_id) pair, but produce multiple files. So the desired groupings would be something like this:
input:
"analysis/A/1/basecalled.fastq"
output:
["analysis/A/1/demultiplex/150.fastq"]
input:
"analysis/A/3/basecalled.fastq"
output:
["analysis/A/3/demultiplex/111.fastq",
"analysis/A/3/demultiplex/145.fastq",
"analysis/A/3/demultiplex/153.fastq"]
input:
"analysis/B/4/basecalled.fastq"
output:
["analysis/B/4/demultiplex/105.fastq",
"analysis/B/4/demultiplex/107.fastq"]
So the rule demultiplex in this example would run 3 times.
A solution could be to touch a file for each fastq file that needs to be demultiplexed. In the code below the assumption is that the path to the master fastq files can be reconstructed from the information in the sample sheet (which should be the case if I understand correctly):
import pandas as pd
samples = pd.read_csv("samples.csv").set_index(
["region", "run_id", "sample_id"], drop=False
)
fastq= samples[['region', 'run_id']].drop_duplicates()
rule all:
input:
expand('analysis/{region}/{run}/demultiplex/demux.done', zip, \
region= list(fastq['region']), run= list(fastq['run_id']))
rule demultiplex:
input:
"analysis/{region}/{run}/basecalled.fastq",
output:
touch('analysis/{region}/{run}/demultiplex/demux.done'),
shell:
r"""
demux {input}
"""
Related
Do you know how to run snakemake with specific combination of files? i.e. In this txt files I have list of sequence ID's:
bob.txt
steve.txt
john.txt
From these files I want to extract the sequences of the ID's in the above files:
bob.fa
steve.fa
john.fa
So sequence ID's from bob should look for sequences in bob.fa, while john in john.fa and so on.
workdir: "/path/to/dir/"
(SAMPLES,) =glob_wildcards('path/to/dir/{sample}.fa')
rule all:
input:
expand("{sample}.unique.fa", sample=SAMPLES)
rule seqkit:
input:
infa ="path/to/dir/{sample}.fa"
intxt = "path/to/dir/{sample}.txt
output:
outfa = "{sample}.unique.fa"
shell:
("/Tools/seqkit grep -f {input.intxt} {input.infa} > {output.outfa}")
So I do not need all combinations, but only specific, like bob.txt and bob.fa, steve.txt and steve.fa.
Because my current code will also do bob.txt in steve.fa
Comma is missing in rule seqkit input.
rule seqkit:
input:
infa ="path/to/dir/{sample}.fa",
intxt = "path/to/dir/{sample}.txt
I would like to define input file names from different varialbles extracted from a csv. I have built the following simplified example:
I have a file test.csv:
data/samples/A.fastq
data/samples/B.fastq
I give the path to test.csv in a json config file:
{
"samples": {
"summaryFile": "somepath/test.csv"
}
}
Now I want to run bwa on each file within a rule. My feeling is that I have to use lambda wildcards but I am not sure. My Snakefile looks like this:
#only for bcf_tools
import pandas
input_table = config["samples"]["summaryFile"]
samplesData = pandas.read_csv(input_table)
def returnSamples(table):
# Have tried different things here but nothing worked
return table
rule all:
input:
expand("mapped_reads/{sample}.bam", sample= samplesData)
rule bwa_map:
input:
"data/genome.fa",
lambda wildcards: returnSamples(wildcards.sample)
output:
"mapped_reads/{sample}.bam"
shell:
"bwa mem {input} | samtools view -Sb - > {output}"
I have tried a million things including using expand (which is working but the rule is not called on each file).
Any help will be tremendously appreciated.
Snakemake works by defining which output you want (like you do in rule all). You are very close to a working solution, however there were some small things that went wrong:
Reading the pandas dataframe does not do what you expect (try printing the samplesData to see what it did/does). Therefore the expand in rule all does not work properly.
You do not need to use lambdas for the input, you can reuse the wildcard.
This should work for your example:
import pandas
import re
input_table = config["samples"]["summaryFile"]
samplesData = pandas.read_csv(input_table, header=None).loc[:, 0].tolist()
samples = [re.findall("[^/]+\.", sample)[0][:-1] for sample in samplesData] # overly complicated regex
rule all:
input:
expand("mapped_reads/{sample}.bam", sample=samples)
rule bwa_map:
input:
"data/genome.fa",
"data/samples/{sample}.fastq"
output:
"mapped_reads/{sample}.bam"
shell:
"bwa mem {input} | samtools view -Sb - > {output}"
However I think it would be easiest to change the description in test.csv. Now we have to do some weird magic to get the sample name from the file, it would probably be best to just store the sample names there.
I have some ONT sequencing runs that have been basecalled on the MINIT. As such, when I demultiplex with guppy_barcoder, I get a directory of fastq files for each barcode. I want to use snakemake as a workflow manager to take these fastq files through our analyses, but this involves swapping the {barcode} for {sample} at some point.
BARCODE=['barcode01', 'barcode02', 'barcode03', 'barcode04']
SAMPLE=['sample01', 'sample02', 'sample03', 'sample04']
rule all:
input:
directory(expand("Sequencing_reads/demultiplexed/{barcode}", barcode=BARCODE)), #guppy_barcoder
expand("Sequencing_reads/gathered/{sample}_ONT.fastq", sample=SAMPLE), #getting all of the fastq files with the same barcode assigned to the correct sample
rule demultiplex:
input:
glob.glob("Sequencing_reads/fastq_pass/*fastq")
output:
directory(expand("Sequencing_reads/demultiplexed/{barcode}", barcode=BARCODE))
shell:
"guppy_barcoder --input_path Sequencing_reads/fastq_pass --save_path Sequencing_reads/demultiplexed -r "
rule gather:
input:
rules.demultiplex.output
output:
"Sequencing_reads/gathered/{sample}_ONT.fastq"
shell:
"cat Sequencing_reads/demultiplexed/{wildcards.barcode}/*fastq > {output.fastq} "
This does give me an error:
RuleException in line 32 of /home/eriny/sandbox/ONT_unicycler_pipeline/ONT_pipeline.smk:
'Wildcards' object has no attribute 'barcode'
But I actually think I'm missing something conceptually. I would like rule gather to be something like:
cat Sequencing_reads/demultiplexed/barcode01/*fastq > Sequencing_reads/gathered/sample01_ONT.fastq
I have tried setting up some dictionaries so that sample and barcode are given the same key, but my syntax must be broken.
I'm hoping to find a 1:1 way to map one variable name onto another.
I'm hoping to find a 1:1 way to map one variable name onto another.
I think the sample to dictionary is a possibility combined with a lambda as input function to get the barcode assign to a sample. For example:
BARCODE=['barcode01', 'barcode02', 'barcode03', 'barcode04']
SAMPLE=['sample01', 'sample02', 'sample03', 'sample04']
sam2bar= dict(zip(SAMPLE, BARCODE))
rule all:
input:
expand("Sequencing_reads/gathered/{sample}_ONT.fastq", sample=SAMPLE), #getting all of the fastq files with the same barcode assigned to the correct sample
rule demultiplex:
input:
glob.glob("Sequencing_reads/fastq_pass/*fastq"),
output:
done= touch('demux.done'), # This signals that guppy has completed
shell:
"guppy_barcoder --input_path Sequencing_reads/fastq_pass --save_path Sequencing_reads/demultiplexed -r "
rule gather:
input:
done= 'demux.done',
fastq= lambda wc: glob.glob("Sequencing_reads/demultiplexed/%s/*fastq" % sam2bar[wc.sample])
output:
fastq= "Sequencing_reads/gathered/{sample}_ONT.fastq"
shell:
"cat {input.fastq} > {output.fastq} "
First off, I'm sorry if I'm not explaining my problem clearly, English is not my native language.
I'm trying to make a snakemake rule that takes a fastq file and filters it with a program called Filtlong. I have multiple fastq files on which I want to run this rule and it should output a filtered file per fastq file but apparently it takes all of the fastq files as input for a single Filtlong command.
The fastq files are in separate directories and the snakemake rule should write the filtered files to separate directories aswell.
This is how my code looks right now:
from os import listdir
configfile: "config.yaml"
DATA = config["DATA"]
SAMPLES = listdir(config["RAW_DATA"])
RAW_DATA = config["RAW_DATA"]
FILT_DIR = config["FILTERED_DIR"]
rule all:
input:
expand("{FILT_DIR}/{sample}/{sample}_filtered.fastq.gz", FILT_DIR=FILT_DIR, sample=SAMPLES)
rule filter_reads:
input:
expand("{RAW_DATA}/{sample}/{sample}.fastq", sample=SAMPLES, RAW_DATA=RAW_DATA)
output:
"{FILT_DIR}/{sample}/{sample}_filtered.fastq.gz"
shell:
"filtlong --keep_percent 90 --target_bases 300000000 {input} | gzip > {output}"
And this is the config file:
DATA:
all_samples
RAW_DATA:
all_samples/raw_samples
FILTERED_DIR:
all_samples/filtered_samples
The separate directories with the fastq files are in RAW_DATA and the directories with the filtered files should be in FILTERED_DIR,
When I try to run this, I get an error that looks something like this:
Error in rule filter_reads:
jobid: 30
output: all_samples/filtered_samples/cell_18-07-19_barcode10/cell_18-07-19_barcode10_filtered.fastq.gz
shell:
filtlong --keep_percent 90 --target_bases 300000000 all_samples/raw_samples/cell3_barcode11/cell3_barcode11.fastq all_samples/raw_samples/barcode01/barcode01.fastq all_samples/raw_samples/barcode03/barcode03.fastq all_samples/raw_samples/barcode04/barcode04.fastq all_samples/raw_samples/barcode05/barcode05.fastq all_samples/raw_samples/barcode06/barcode06.fastq all_samples/raw_samples/barcode07/barcode07.fastq all_samples/raw_samples/barcode08/barcode08.fastq all_samples/raw_samples/barcode09/barcode09.fastq all_samples/raw_samples/cell3_barcode01/cell3_barcode01.fastq all_samples/raw_samples/cell3_barcode02/cell3_barcode02.fastq all_samples/raw_samples/cell3_barcode03/cell3_barcode03.fastq all_samples/raw_samples/cell3_barcode04/cell3_barcode04.fastq all_samples/raw_samples/cell3_barcode05/cell3_barcode05.fastq all_samples/raw_samples/cell3_barcode06/cell3_barcode06.fastq all_samples/raw_samples/cell3_barcode07/cell3_barcode07.fastq all_samples/raw_samples/cell3_barcode08/cell3_barcode08.fastq all_samples/raw_samples/cell3_barcode09/cell3_barcode09.fastq all_samples/raw_samples/cell3_barcode10/cell3_barcode10.fastq all_samples/raw_samples/cell3_barcode12/cell3_barcode12.fastq all_samples/raw_samples/cell_18-07-19_barcode01/cell_18-07-19_barcode01.fastq all_samples/raw_samples/cell_18-07-19_barcode02/cell_18-07-19_barcode02.fastq all_samples/raw_samples/cell_18-07-19_barcode03/cell_18-07-19_barcode03.fastq all_samples/raw_samples/cell_18-07-19_barcode04/cell_18-07-19_barcode04.fastq all_samples/raw_samples/cell_18-07-19_barcode05/cell_18-07-19_barcode05.fastq all_samples/raw_samples/cell_18-07-19_barcode06/cell_18-07-19_barcode06.fastq all_samples/raw_samples/cell_18-07-19_barcode07/cell_18-07-19_barcode07.fastq all_samples/raw_samples/cell_18-07-19_barcode08/cell_18-07-19_barcode08.fastq all_samples/raw_samples/cell_18-07-19_barcode09/cell_18-07-19_barcode09.fastq all_samples/raw_samples/cell_18-07-19_barcode10/cell_18-07-19_barcode10.fastq all_samples/raw_samples/cell_18-07-19_barcode11/cell_18-07-19_barcode11.fastq all_samples/raw_samples/cell_18-07-19_barcode12/cell_18-07-19_barcode12.fastq all_samples/raw_samples/cell_18-07-19_barcode13/cell_18-07-19_barcode13.fastq all_samples/raw_samples/cell_18-07-19_barcode14/cell_18-07-19_barcode14.fastq all_samples/raw_samples/cell_18-07-19_barcode15/cell_18-07-19_barcode15.fastq all_samples/raw_samples/cell_18-07-19_barcode16/cell_18-07-19_barcode16.fastq all_samples/raw_samples/cell_18-07-19_barcode17/cell_18-07-19_barcode17.fastq all_samples/raw_samples/cell_18-07-19_barcode18/cell_18-07-19_barcode18.fastq all_samples/raw_samples/cell_18-07-19_barcode19/cell_18-07-19_barcode19.fastq | gzip > all_samples/filtered_samples/cell_18-07-19_barcode10/cell_18-07-19_barcode10_filtered.fastq.gz
(exited with non-zero exit code)
As far as I can tell, the rule takes all of the fastq files as input for a single Filtlong command, but I don't quite understand why
You shouldn't use the expand function in your input section of the filter_reads rule. What you are doing now is requiring all your samples to be the input of each filtered file: that is what you can observe in your error message.
There is another complication that you introduce out of nothing: you mix both wildcards and variables. In your example the {FILT_DIR} is just a predefined value while the {sample} is a wildcard that Snakemake uses to match the rules. Try the following (pay special attention on single/double brackets and on the formatted string (the one that has the form f"")):
rule filter_reads:
input:
f"{RAW_DATA}/{{sample}}/{{sample}}.fastq"
output:
f"{FILT_DIR}/{{sample}}/{{sample}}_filtered.fastq.gz"
shell:
"filtlong --keep_percent 90 --target_bases 300000000 {input} | gzip > {output}"
I have multiple studies and I must make two files (a .notsad and .txt file) for each of the n number of studies. After these are created, I must run a command which runs per chromosome and uses the same two input files (.notsad, .txt) for each chromosome within a given study. So:
mycommand.py study1.notsad study1_filter.txt chr1.bad.gz --out chr1_filter.bad.gz
mycommand.py study1.notsad study1_filter.txt chr2.bad.gz --out chr2_filter.bad.gz
...
mycommand.py study2.notsad study2_filter.txt chr1.bad.gz --out chr1_filter.bad.gz
...
However Im having trouble getting this to run. Im getting an error:
WildcardError in line 33 of /scripts/Snakefile:
Wildcards in input files cannot be determined from output files:
'ds_lower'
My rules so far:
import os
import glob
ROOT = "/rootdir/"
ORIGINAL_DATA_FOLDER="original/"
PROCESS_DATA_FOLDER="process/"
ORIGINAL_DATA_SOURCE=ROOT+ORIGINAL_DATA_FOLDER
PROCESS_DATA_SOURCE=ROOT+PROCESS_DATA_FOLDER
DATASETS = [name for name in os.listdir(ORIGINAL_DATA_SOURCE) if os.path.isdir(os.path.join(ORIGINAL_DATA_SOURCE, name))]
LOWERCASE_DATASETS = [dataset.lower() for dataset in DATASETS]
CHROMOSOME = list(range(1,23))
rule all:
input:
expand(PROCESS_DATA_SOURCE+"{ds}/chr{chr}_filtered.gen.gz", ds=DATASETS, chr=CHROMOSOME)
rule run_command:
input:
ORIGINAL_DATA_SOURCE+"{ds}/chr{chr}.bad.gz", # Matches 22 chroms
PROCESS_DATA_SOURCE+"{ds}/{ds_lower}_filter.txt", # But this should be common to all chr runs for this study.
PROCESS_DATA_SOURCE+"{ds}/{ds_lower}.notsad" # This one as well.
output:
PROCESS_DATA_SOURCE+"{ds}/chr{chr}_filtered.gen.gz"
shell:
# Run command that uses each of the previous files and runs per chromosome
"mycommand.py {input.2} {input.1} {input.0} --out {output}"
rule write_txt_file:
input:
ORIGINAL_DATA_SOURCE+"{ds}/{ds_lower}_info.txt"
output:
PROCESS_DATA_SOURCE+"{ds}/{ds_lower}_filter.txt"
shell:
"touch {output}"
rule write_notsad_file:
input:
ORIGINAL_DATA_SOURCE+"{ds}/_{ds_lower}.sad"
output:
PROCESS_DATA_SOURCE+"{ds}/{ds_lower}.notsad"
shell:
"touch {output}"
UPDATE
Changing inputs for rule run_command to lambda functions did work.
rule run_command:
input:
ORIGINAL_DATA_SOURCE+"{ds}/chr{chr}.gen.gz",
lambda wildcards: PROCESS_DATA_SOURCE + f"{wildcards.ds}/{wildcards.ds.lower()}_filter.txt",
lambda wildcards: PROCESS_DATA_SOURCE + f"{wildcards.ds}/{wildcards.ds.lower()}.sample"
output:
PROCESS_DATA_SOURCE+"{ds}/chr{chr}_filtered.gen.gz"
run:
# Run command that uses each of the previous files and runs per chromosome
"mycommand.py {input.2} {input.1} {input.0} --out {output}"
All the wildcards used in input need to be present in output. In rule run_command, wildcard {ds_lower} is present only in input but not in output.