Tensorflow: Accumulating gradients of a Tensor - tensorflow

TL;DR: you can just skip to the question in yellow box below.
Suppose I have a Encoder-Decoder Neural Network, with weights W_1 and W_2 of the encoder and decoder respectively. Let's denote Z as the output of the encoder. The network is trained with batch size n, and all the gradients will be calculated with respect to the mean loss value over the batch (as shown in image below, the L_hat which is the sum of per-sample loss L).
What I'm trying to achieve is, in the backward pass, to manipulate the gradients of Z before passing it further to the encoder's weights W_1. Suppose is a somehow modified gradients operator, for which the following holds:
The described above, in case of a synchronuous pass (first calculate the modified gradients of Z, then propagate down to W_1) is very easy to implement (the Jacobian multiplication is done using grad_ys of tf.gradients):
def modify_grad(grad_z):
# do some modifications
grad_z = tf.gradients(L_hat, Z)
mod_grad_z = modify_grad(grad_z)
mod_grad_w1 = tf.gradients(Z, W_1, mod_grad_z)
The problem is, I need to accumulate the gradients grad_z of the tensor Z over several batches. As the shape of it is dynamic (with None in one of the dimensions, as in the illustration above), I cannot define a tf.Variable to store it. Furthermore, the batch size n may change during training. How can I store the average of grad_z over several batches?
PS: I just wanted to combine pareto-optimal training of ArXiv:1810.04650, the asynchronous network training of ArXiv:1609.02132, and batch size scheduling of ArXiv:1711.00489.

Related

Binary classification of pairs with opposite labels

I have a data-set without labels, but I do have a way to get pairs of examples with opposite labels, that is given a pair x,z I know that their true labels are either 0,1 or 1,0.
So, I am building a model that accepts pairs of samples as input, and learns to classify them with opposite labels. Assuming I have an arbitrary model for predicting a single sample, y_hat = f(x), I am building a model with Keras that accepts pairs of samples (x,z) and outputs pairs of predictions, f(x), f(z). I then use a custom loss function that drives the model towards the correct direction: Given that a regular binary classifier is trained using the Binary Cross Entropy (BCE) to make the predicted and desired output "close", I use the negative BCE. Also, since BCE is not symmetric, I symmetrize it. So, the loss function I give the model.compile method is:
from tensorflow import keras
bce = keras.losses.BinaryCrossentropy()
def neg_sym_bce(y1, y2):
return (- 0.5 * (bce(y1, y2) + bce(y2, y1)))
My problem is, this model fails to learn to classify even a single pair of my data (I get f(x)~=f(z)~=0.5), and if I try to train it with synthetic "easy" data, it takes hundreds of epochs to converge (also on a single pair).
This made me suspect that it has to do with a "vanishing gradient" problem. Indeed, when I plot (see below) the loss for a single pair, which is a function of 2 variables (the 2 outputs), it is evident that there is a wide plateau around the 0.5, 0.5 point. It is also evident that the global minima is, as expected, around the points 0,1 and 1,0.
So, is there a way to deal with the vanishing gradient here? I read about the problem but the references I found deal with vanishing gradient in the network, not in the loss itself.
Or, is there another loss that can drive the model to predict opposite labels?
Think if your labels are always either 0,1 or 1,1 just use categorical_crossentropy for the loss.

TensorFlow / PyTorch: Gradient for loss which is measured externally

I am relatively new to Machine Learning and Python.
I have a system, which consists of a NN whose output is fed into an unknown nonlinear function F, e.g. some hardware. The idea is to train the NN to be an inverse F^(-1) of that unknown nonlinear function F. This means that a loss L is calculated at the output of F. However, backpropagation cannot be used in a straightforward manner for calculating the gradients and updating the NN weights because the gradient of F is not known either.
Is there any way how to use a loss function L, which is not directly connected to the NN, for the calculation of the gradients in TensorFlow or PyTorch? Or to take a loss that was obtained with any other software (Matlab, C, etc.) use it for backpropagation?
As far as I know, Keras keras.backend.gradients only allows to calculate gradients with respect to connected weights, otherwise the gradient is either zero or NoneType.
I read about the stop_gradient() function in TensorFlow. But I am not sure whether this is what I am looking for. It allows to not compute the gradient with respect to some variables during backpropagation. But I think the operation F is not interpreted as a variable anyway.
Can I define any arbitrary loss function (including a hardware measurement) and use it for backpropagation in TensorFlow or is it required to be connected to the graph as well?
Please, let me know if my question is not specific enough.
AFAIK, all modern deep learning packages (pytorch, tensorflow, keras etc.) are relaying on gradient descent (and its many variants) to train networks.
As the name suggests, you cannot do gradient descent without gradients.
However, you might circumvent the "non differentiability" of your "given" function F by looking at the problem from a slightly different perspective:
You are trying to learn a model M that "counters" the effect of F. So you have access to F (but not its gradients) and a set of representative inputs X={x_0, x_1, ... x_n}.
For each example x_i you can compute y_i = F(x_i) and your end goal is to have a model M that given y_i will output x_i.
Therefore, you can treat y_i as your model's input and compute a loss between M(y_i) and x_i that produced it. This way you do not need to compute gradients through the "black box" F.
A pseudo code would look something like:
for x in examples:
y = F(x) # applying F on x - getting only output WITHOUT any gradients
pred = M(y) # apply the trainable model M to the output of F
loss = ||x - pred|| # loss will propagate gradients through M and stop at F
loss.backward()

An Efficient way to Calculate loss function batchwise?

I am using autoencoders to do anomaly detection. So, I have finished training my model and now I want to calculate the reconstruction loss for each entry in the dataset. so that I can assign anomalies to data points with high reconstruction loss.
This is my current code to calculate the reconstruction loss
But this is really slow. By my estimation, it should take 5 hours to go through the dataset whereas training one epoch occurs in approx 55 mins.
I feel that converting to tensor operation is bottlenecking the code, but I can't find a better way to do it.
I've tried changing the batch sizes but it does not make much of a difference. I have to use the convert to tensor part because K.eval is throwing an error if I do it normally.
python
for i in range(0, encoded_dataset.shape[0], batch_size):
y_true = tf.convert_to_tensor(encoded_dataset[i:i+batch_size].values,
np.float32)
y_pred= tf.convert_to_tensor(ae1.predict(encoded_dataset[i:i+batch_size].values),
np.float32)
# Append the batch losses (numpy array) to the list
reconstruction_loss_transaction.append(K.eval(loss_function( y_true, y_pred)))
I was able to train in 55 mins per epoch. So I feel prediction should not take 5 hours per epoch. encoded_dataset is a variable that has the entire dataset in main memory as a data frame.
I am using Azure VM instance.
K.eval(loss_function(y_true,y_pred) is to find the loss for each row of the batch
So y_true will be of size (batch_size,2000) and so will y_pred
K.eval(loss_function(y_true,y_pred) will give me an output of
(batch_size,1) evaluating binary cross entropy on each row of y
_true and y_pred
Moved from comments:
My suspicion is that ae1.predict and K.eval(loss_function) are behaving in unexpected ways. ae1.predict should normally be used to output the loss function value as well as y_pred. When you create the model, specify that the loss value is another output (you can have a list of multiple outputs), then just call predict here once to get both y_pred the loss value in one call.
But I want the loss for each row . Won't the loss returned by the predict method be the mean loss for the entire batch?
The answer depends on how the loss function is implemented. Both ways produce perfectly valid and identical results in TF under the hood. You could average the loss over the batch before taking the gradient w.r.t. the loss, or take the gradient w.r.t. a vector of losses. The gradient operation in TF will perform the averaging of the losses for you if you use the latter approach (see SO articles on taking the per-sample gradient, it's actually hard to do).
If Keras implements the loss with reduce_mean built into the loss, you could just define your own loss. If you're using square loss, replacing 'mean_squared_error' with lambda y_true, y_pred: tf.square(y_pred - y_true). That would produce square error instead of MSE (no difference to the gradient), but look here for the variant including the mean.
In any case this produces a per sample loss so long as you don't use tf.reduce_mean, which is purely optional in the loss. Another option is to simply compute the loss separately from what you optimize for and make that an output of the model, also perfectly valid.

How to make a selective back-propagation in a mini-batch in Tensorflow?

Recently, I'm working on a project "predicting future trajectories of objects from their past trajectories by using LSTMs in Tensorflow."
(Here, a trajectory means a sequence of 2D positions.)
Input to the LSTM is, of course, 'past trajectories' and output is 'future trajectories'.
The size of mini-batch is fixed when training. However, the number of past trajectories in a mini-batch can be different. For example, let the mini-batch size be 10. If I have only 4 past trajectories for the current training iteration, 6 out of 10 in the mini-batch is padded with zero value.
When calculating the loss for the back-propagation, I let the loss from the 6 be zero so that the only 4 contribute to the back-propagation.
The problem that I concern is..it seems that Tensorflow still calculates gradients for the 6 even if their loss is zero. As a result, the training speed becomes slower as I increase the mini-batch size even if I used the same training data.
I also used tf.where function when calculating the loss. However, the training time does not decrease.
How can I reduce the training time?
Here I attached my pseudo code for training.
# For each frame in a sequence
for f in range(pred_length):
# For each element in a batch
for b in range(batch_size):
with tf.variable_scope("rnnlm") as scope:
if (f > 0 or b > 0):
scope.reuse_variables()
# for each pedestrian in an element
for p in range(MNP):
# ground-truth position
cur_gt_pose = ...
# loss mask
loss_mask_ped = ... # '1' or '0'
# go through RNN decoder
output_states_dec_list[b][p], zero_states_dec_list[b][p] = cell_dec(cur_embed_frm_dec,
zero_states_dec_list[b][p])
# fully connected layer for output
cur_pred_pose_dec = tf.nn.xw_plus_b(output_states_dec_list[b][p], output_wd, output_bd)
# go through embedding function for the next input
prev_embed_frms_dec_list[b][p] = tf.reshape(tf.nn.relu(tf.nn.xw_plus_b(cur_pred_pose_dec, embedding_wd, embedding_bd)), shape=(1, rnn_size))
# calculate MSE loss
mse_loss = tf.reduce_sum(tf.pow(tf.subtract(cur_pred_pose_dec, cur_gt_pose_dec), 2.0))
# only valid ped's traj contributes to the loss
self.loss += tf.multiply(mse_loss, loss_mask_ped)
I think you're looking for the function tf.stop_gradient. Using this, you could do something like tf.where(loss_mask, tensor, tf.stop_gradient(tensor)) to achieve the desired result, assuming that the dimensions are correct.
However, it looks like this is probably not your issue. It seems as though for each item in your dataset, you are defining new graph nodes. This is not how TensorFlow is supposed to function, you should only have one graph, built beforehand that performs some fixed function, regardless of the batch size. You should definitely not be defining new nodes for every element in the batch, since that cannot efficiently take advantage of parallelism.

Does Stochastic Gradient Descent even work with TensorFlow?

I designed a MLP, fully connected, with 2 hidden and one output layer.
I get a nice learning curve if I use batch or mini-batch gradient descent.
But a straight line while performing Stochastic Gradient Descent (violet)
What did I get wrong?
In my understanding, I do stochastic gradient descent with Tensorflow, if I provide just one train/learn example each train step, like:
X = tf.placeholder("float", [None, amountInput],name="Input")
Y = tf.placeholder("float", [None, amountOutput],name="TeachingInput")
...
m, i = sess.run([merged, train_op], feed_dict={X:[input],Y:[label]})
Whereby input is a 10-component vector and label is a 20-component vector.
For testings I run 1000 iterations, each iterations contains one of 50 prepared train/learn example.
I expected an overfittet nn. But as you see, it doesn't learn :(
Because the nn will perform in an online-learning environment, a mini-batch oder batch gradient descent isn't an option.
thanks for any hints.
The batch size influences the effective learning rate.
If you think to the update formula of a single parameter, you'll see that it's updated averaging the various values computed for this parameter, for every element in the input batch.
This means that if you're working with a batch size with size n, your "real" learning rate per single parameter is about learning_rate/n.
Thus, if the model you've trained with batches of size n have trained without issues, this is because the learning rate was ok for that batch size.
If you use pure stochastic gradient descent, you have to lower the learning rate (usually by a factor of some power of 10).
So, for example, if your learning rate was 1e-4 with a batch size of 128, try with a learning rate of 1e-4 / 128.0 as see if the network learn (it should).