I am new in machine learning and tensorflow. And I have learned some related materials. I did some projects taught in the tutorial, such as mnist, image recognition .And now I want to train on my own dataset which is a set of 15 seconds music clips. I used librosa.mfcc to extract feature of them. I took the mfcc array as input, used RNN model to train it. But during training the result of loss is so odd.
Step 0,train loss = 11.72
Step 50,train loss = 0.00
Step 100,train loss =0.72
Step 150,train loss =0.08
Step 200,train loss =0.64
Step 250,train loss =0.64
Step 300,train loss =0.00
Step 350,train loss =0.62
Step 400,train loss =0.61
Step 450,train loss = 115.77
I don't what is the matter. Is it the matter of input data preprocessing? Or is the RNN model inappropriate to use?
The input data which shape is (128,1293) are like that:
[[-2.40214356e+02 -2.54111029e+02 -2.81576989e+02 ... -3.26748334e+02
-3.13127357e+02 -3.10083835e+02]
[ 1.55226378e+02 1.88829858e+02 2.22116743e+02 ... 2.02720581e+02
1.88478421e+02 1.71466354e+02]
[-7.25124769e+01 -7.66927520e+01 -7.35990460e+01 ... -6.97141304e+01
-8.91782486e+01 -1.01798663e+02]
...
[-2.13188683e+00 -1.47389498e+00 4.32850268e-01 ... -8.17353566e-01
1.74879699e-01 1.55565475e+00]
[-1.18913985e+00 -1.75976975e+00 -5.36811511e-01 ... -1.70165869e+00
1.08840259e+00 3.49373224e+00]
[-1.80539142e-01 -4.37886115e-01 -5.02952858e-01 ... -1.91972103e+00
-1.48080339e-01 9.51365549e-01]]
And my RNN model is like that:
def inference(input_mfcc, train):
with tf.device('/gpu:0'):
with tf.variable_scope('conv1'):
# 128*1293 conv1 29*294*32 ===> 100*1000*32
# 100*1000*32 pool1 4*4 s4====>25*250*32
conv1 = tf.layers.conv2d(inputs=input_mfcc,
filters=32,
kernel_size=[29,294],
padding='valid',
activation=tf.nn.relu)
pool1 = tf.layers.max_pooling2d(inputs=conv1,pool_size=[4,4],strides=4)
print("conv1:",conv1.get_shape().as_list())
print("pool1:",pool1.get_shape().as_list())
with tf.variable_scope('conv2'):
# 25*250 conv2 6*51*64 ===> 20*200*64
# 20*200*64 pool1 4*4 s4====> 5*50*64
conv2 = tf.layers.conv2d(inputs=pool1,
filters=64,
kernel_size=[6,51],
padding='valid',
activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2,pool_size=[4,4],strides=4)
print("conv2:",conv2.get_shape().as_list())
print("pool2:",pool2.get_shape().as_list())
with tf.variable_scope('conv3'):
#5*5*64
conv3 = tf.layers.conv2d(inputs=pool2,
filters=64,
kernel_size=[1,46],
padding='valid',
activation=tf.nn.relu)
print("conv3",conv3.get_shape().as_list())
with tf.variable_scope('fc1'):
pool2_flat = tf.reshape(pool2,[1,-1])
print("pool2_flat",pool2_flat.get_shape().as_list())
fc1 = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout1 = tf.layers.dropout(inputs=fc1, rate=0.4, training=train)
print("dropout1",dropout1.get_shape().as_list())
with tf.variable_scope('logits'):
logits = tf.layers.dense(inputs=dropout1, units=2)
#predit = tf.nn.softmax(logits=logits)
print("logits",logits.get_shape().as_list())
#print("predit",predit.get_shape().as_list())
return logits
And the rest of codes are:
def losses(logits,labels):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=labels,logits=logits,name='cross_entropy')
cross_entropy_loss = tf.reduce_mean(cross_entropy)
return cross_entropy_loss
def training(loss,learning_rate):
with tf.name_scope("optimizer"):
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
global_step = tf.Variable(0, name="global_step", trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
ckpt="./model/music/model.ckpt"
N_CLASSES = 2
MFCC_ROW = 128
MFCC_COL = 1293
INPUT_NODE = MFCC_ROW * MFCC_COL
BATCH_SIZE = 1
CAPACITY = 10
MAX_STEP = 500
learning_rate = 0.0001
def run_train():
train_dir = ""
logs_train_dir = ""
mfcc, label= read_TFRecord()
train_batch,train_labels_batch = tf.train.shuffle_batch([mfcc,label],batch_size=BATCH_SIZE,num_threads=1,capacity=CAPACITY,min_after_dequeue=5)
print("train_batch",train_batch.get_shape().as_list())
print("labels_batch",train_labels_batch.get_shape().as_list())
train_logits = inference(train_batch,True)
print("train_logits",train_logits.get_shape().as_list())
train_loss = losses(train_logits, train_labels_batch)
train_op = training(train_loss,learning_rate)
#train_acc = evaluation(train_logits,train_labels_batch)
with tf.Session() as sess:
saver = tf.train.Saver()
init_op = tf.group(tf.local_variables_initializer(),
tf.global_variables_initializer())
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
for step in range(MAX_STEP):
if coord.should_stop():
break;
_,tra_loss = sess.run([train_op,train_loss])
# print some
if step%50==0:
print('Step %d,train loss = %.4f'%(step,tra_loss))
# 100 save
if step % 100 ==0 or (step +1) == MAX_STEP:
saver.save(sess,ckpt,global_step = step)
except tf.errors.OutOfRangeError:
print('Done training epoch limit reached')
finally:
coord.request_stop()
coord.join(threads)
main:
run_train()
Can anybody give me some advice? Thank you so much!
Related
I have the following classification model.
I would like to get a numpy array similar to y_t which is the test labels one hot encoded. However I keep getting variable error.
# Construct placeholders
with graph.as_default():
inputs_ = tf.placeholder(tf.float32, [None, seq_len, n_channels], name = 'inputs')
labels_ = tf.placeholder(tf.float32, [None, n_classes], name = 'labels')
keep_prob_ = tf.placeholder(tf.float32, name = 'keep')
learning_rate_ = tf.placeholder(tf.float32, name = 'learning_rate')
with graph.as_default():
# (batch, 100, 3) --> (batch, 50, 6)
conv1 = tf.layers.conv1d(inputs=inputs_, filters=6, kernel_size=2, strides=1,
padding='same', activation = tf.nn.relu)
max_pool_1 = tf.layers.max_pooling1d(inputs=conv1, pool_size=2, strides=2, padding='same')
with graph.as_default():
# Flatten and add dropout
flat = tf.reshape(max_pool_1, (-1, 6*6))
flat = tf.nn.dropout(flat, keep_prob=keep_prob_)
# Predictions
logits = tf.layers.dense(flat, n_classes)
# Cost function and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels_))
optimizer = tf.train.AdamOptimizer(learning_rate_).minimize(cost)
# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(labels_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')
Then I use the test set
with tf.Session(graph=graph) as sess:
# Restore
saver.restore(sess, tf.train.latest_checkpoint('bschkpnt-cnn'))
for x_t, y_t in get_batches(X_test, y_test, batch_size):
feed = {inputs_: x_t,
labels_: y_t,
keep_prob_: 1}
batch_acc = sess.run(accuracy, feed_dict=feed)
test_acc.append(batch_acc)
print("Test accuracy: {:.6f}".format(np.mean(test_acc)))
y_t is a nX3 bumpy array.
I want to get a y_pred in similar format
Thanks
soft = tf.nn.softmax(logits)
this will be your probability distribution such that sum(soft) = 1. Every value in this array will indicate how sure the model is about the class.
pred = sess.run(soft, feed_dict=feed)
print(pred)
So basically all I do is place an additional softmax, since you have it inbuilt in the loss you calculate, you've to place it again to predict. Then I ask for the output prediction, and just feed the feed_dict again.
Hope this helped!
I've been trying to solve a prediction/regression problem by using Tensor Flow, but i'm facing some problems. Let me give you some context before I explain my real problem.
The data I've been playing with are a set of 5 features, let's call them [f1, f2, f3, f4, f5], representing in somehow a particular phenomena identified by a real value (target).
What I've been trying to do is to train a Multi Layer Perceptron that learns the relationship among the features and the target values. In a nutshell i'd like to predict real values on the base of what the neural network as seen during the training phase.
I've identified this problem as prediction/regression problem and wrote down the following code:
#picking device to run on
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
# Parameters
learning_rate = 0.001
training_epochs = 99999
batch_size = 4096
STDDEV = 0.1
# Network Parameters
n_hidden_1 = 10 # 1st layer number of neurons
n_hidden_2 = 10 # 2nd layer number of neurons
n_hidden_3 = 10 # 3nd layer number of neurons
n_hidden_4 = 10 # 4nd layer number of neurons
n_hidden_5 = 10 # 5nd layer number of neurons
n_input = 5 # number of features
n_classes = 1 # one target value (float)
# tf Graph input
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
# LOADING DATA
data_train = loader.loadDataset(dir_feat, train_path, 'TRAIN', features)
data_test = loader.loadDataset(dir_feat, test_path, 'TEST', features)
valid_period = 5
test_period = 10
def multilayer_perceptron(x, weights, biases):
# Hidden layer with sigmoid activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.sigmoid(layer_1)
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.sigmoid(layer_2)
layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
layer_3= tf.nn.sigmoid(layer_3)
layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4'])
layer_4 = tf.nn.sigmoid(layer_4)
layer_5 = tf.add(tf.matmul(layer_4, weights['h5']), biases['b5'])
layer_5 = tf.nn.sigmoid(layer_5)
# Output layer with linear activation
out = tf.matmul(layer_5, weights['out']) + biases['out']
return out
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1],stddev=STDDEV)),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2],stddev=STDDEV)),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3],stddev=STDDEV)),
'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4],stddev=STDDEV)),
'h5': tf.Variable(tf.random_normal([n_hidden_4, n_hidden_5],stddev=STDDEV)),
'out': tf.Variable(tf.random_normal([n_hidden_5, n_classes],stddev=STDDEV))
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'b3': tf.Variable(tf.random_normal([n_hidden_3])),
'b4': tf.Variable(tf.random_normal([n_hidden_4])),
'b5': tf.Variable(tf.random_normal([n_hidden_5])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
def RMSE():
return tf.sqrt(tf.reduce_mean(tf.square(y - pred)))
cost = RMSE()
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(1, training_epochs):
avg_cost = 0.
avg_R_square_train = []
train_dataset = loader.Dataset(data=data_train, batch_size=batch_size, num_feats=n_input)
total_batch = train_dataset.getNumberBatches()
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = train_dataset.next_batch(update=True)
# Run optimization op (backprop) and cost op (to get loss value)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
c_train = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
# Compute average loss
avg_cost += c_train / total_batch
print("Epoch:" + str(epoch) + ", TRAIN_loss = {:.9f}".format(avg_cost))
# TESTING
if epoch % test_period == 0:
c_test = sess.run(cost, feed_dict={x: data_test[0][0], y: data_test[0][1]})
print("Epoch:" + str(epoch) + ", TEST_loss = {:.9f}".format(c_test))
The problem I've encountered is that the cost function for the test set (after some iterations) got stuck in a local minima and doesn't decrease anymore.
Epoch:6697, TRAIN_loss = 2.162182076
Epoch:6698, TRAIN_loss = 2.156500859
Epoch:6699, TRAIN_loss = 2.157814605
Epoch:6700, TRAIN_loss = 2.160744122
Epoch:6700, TEST_loss = 2.301288128
Epoch:6701, TRAIN_loss = 2.139338647
...
Epoch:6709, TRAIN_loss = 2.166410744
Epoch:6710, TRAIN_loss = 2.162357884
Epoch:6710, TEST_loss = 2.301478863
Epoch:6711, TRAIN_loss = 2.143475396
...
Epoch:6719, TRAIN_loss = 2.145476401
Epoch:6720, TRAIN_loss = 2.150237552
Epoch:6720, TEST_loss = 2.301517725
Epoch:6721, TRAIN_loss = 2.151232243
...
Epoch:6729, TRAIN_loss = 2.163080522
Epoch:6730, TRAIN_loss = 2.160523321
Epoch:6730, TEST_loss = 2.301782370
...
Epoch:6739, TRAIN_loss = 2.156920952
Epoch:6740, TRAIN_loss = 2.162290675
Epoch:6740, TEST_loss = 2.301943779
...
I've tried to change the several hyper-parameters such as the number of hidden layer and/or the number of nodes, the learning rate, the batch size, etc but the situation doesn't change at all. I have also tried to use other loss function such as MAE, MSE.
Actually the number of data sample i have is roughly 270,000.
Can someone please suggest me how to solve this problem or give me some useful advices about it?
Thanks in advance.
Davide
I have built a simple neural network to classify data into only 2 classes
Data is something like this
34.62365962451697,78.0246928153624,0
60.18259938620976,86.30855209546826,1
There are no zero values in data so there's no source of such cost.Cost is zero with adagrad optimiser and nan with gradient descent optimiser
Here's the code
import numpy as ny
import tensorflow as tf
def load():
data = []
for line in open("ex2data1.txt"):
row = line.split(',')
x = ny.array(row, dtype='|S4')
data.append(x.astype(ny.float64))
return ny.array(data)
def multilayer_perceptron(x, weights, biases):
# Hidden layer with ReLU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with ReLU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Output layer with linear activation
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([2, 15])),
'h2': tf.Variable(tf.random_normal([15, 15])),
'out': tf.Variable(tf.random_normal([15, 1]))
}
biases = {
'b1': tf.Variable(tf.random_normal([15])),
'b2': tf.Variable(tf.random_normal([15])),
'out': tf.Variable(tf.random_normal([1]))
}
data = load()
Xdata = ny.array(data[:, 0:2])
Ydata = ny.array(data[:, 2])
Ydata = ny.array(Ydata.reshape([100, 1]))
# Step 2 - Create input and output placeholders for data
X = tf.placeholder("float", [None, 2], name="X")
Y = tf.placeholder("float", [None, 1], name="Y")
pred = multilayer_perceptron(X, weights, biases)
# Minimize error using cross entropy
with tf.name_scope("cost"):
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=Y))
optimizer = tf.train.AdagradOptimizer(0.001).minimize(cost)
tf.summary.scalar("cost", cost)
init = tf.global_variables_initializer()
summary_op = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init)
print(Xdata)
print(Ydata)
# Step 12 train the model
for i in range(1000):
sess.run(optimizer, feed_dict={X: Xdata, Y: Ydata})
if (i % 100 == 0):
print(sess.run(cost, feed_dict={X: Xdata, Y: Ydata}))
With the way your labels are represented you should not use this loss function. I think this is relevant
I'm trying to get predictions for the training set but I always get the same result for every image. Could someone help me please?
This is how I defined the network:
x = tf.placeholder(tf.float32, shape=[None, image_size_h, image_size_v, num_channels])
y_ = tf.placeholder(tf.float32, shape=[None, num_classes])
keep_prob = tf.placeholder(tf.float32)
def conv_net(x1, weights, biases):
# First Convolution Layer
conv1 = conv2d_pool(x1, weights['wc1'], biases['bc1'], 'conv1')
#print(conv1.get_shape())
# Second Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'], 'conv2')
conv3 = conv2d(conv2, weights['wc3'], biases['bc3'], 'conv3')
conv4 = conv2d(conv3, weights['wc4'], biases['bc4'],'conv4')
conv5 = conv2d(conv4, weights['wc5'], biases['bc5'],'conv5')
conv6 = conv2d(conv5, weights['wc6'], biases['bc6'],'conv6')
# Fully connected layer
fc1 = fullycon(conv6, weights['wd1'], biases['bd1'], 'fc1')
# Dropout
fc1_drop = tf.nn.dropout(fc1, keep_prob)
fc2 = fullytanh(fc1_drop, weights['wd2'], biases['bd2'], 'fc2')
out = tf.add(tf.matmul(fc2, weights['out']), biases['bout'])
return out
pred = conv_net(x, weights, biases)
prediyo = tf.argmax(tf.nn.softmax(pred), axis=1)
# Loss and optimizer
correct_prediction = tf.equal(tf.argmax(y_,axis=1), tf.argmax(pred,axis=1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(cost)
While I get the prediction by doing:
result_boxes_n = normalise_images(result_boxes)
for n in range (0,result_boxes.shape[0]):
predicted = prediyo.eval(feed_dict={x:np.reshape(result_boxes_n[n,:,:,:],(1,9,8,3)), keep_prob: 1})
print(predicted)
predicted outputs always the same class, although training accuracy is higher than 90%. However, if I do:
prediyo.eval(feed_dict={x:result_boxes_n, keep_prob: 1})
it works, but no when I try to do individual predictions.
Thanks in advance
I have a python script to train a Tensorflow model similar to the one in CIFAR-10 tutorial. I have 20500 training examples and am using 128 examples per batch. I set 1,000,000 as the max number of steps. However after about 164,000 steps, the python script seems stuck somewhere. Is there any way to find out where the script is stuck? My last resort would be using Ctrl-C to terminate the process and force it to print out a backtrace. But I wonder if there are other things I should check before I kill the process.
Here's the train loop:
def train(trainingData, batchSize, workingDir, maxSteps):
with tf.Graph().as_default():
global_step = tf.Variable(0, trainable=False)
image, label = readData(trainingData)
minAfterDequeue = 5000
capacity = minAfterDequeue + 3 * batchSize
imageBatch, labelBatch = tf.train.shuffle_batch([image, label], batch_size=batchSize, capacity=capacity, min_after_dequeue=minAfterDequeue)
#labelBatch = tf.reshape(labelBatch, [batchSize, 1])
#tf.image_summary('images', imageBatch)
#tf.histogram_summary('labels', tf.cast(labelBatch, tf.float32))
logits = network.inference(imageBatch, 0.5)
#floatLabel = tf.cast(labelBatch, tf.float32)
#cross_entropy_per_example = tf.nn.softmax_cross_entropy_with_logits(logits, floatLabel)
loss, cross_entropy = network.loss(logits, labelBatch)
train_op = network.train(loss, global_step, batchSize)
# Create a saver
saver = tf.train.Saver(tf.all_variables())
summary_op = tf.merge_all_summaries()
session = tf.Session()
init = tf.initialize_all_variables()
session.run(init)
tf.train.start_queue_runners(sess=session)
summary_writer = tf.train.SummaryWriter(workingDir, session.graph_def)
for step in xrange(maxSteps):
start_time = time.time()
#l, sm, ce = session.run([floatLabel, logits, cross_entropy_per_example])
#print l
#print sm
#print ce
_, loss_value = session.run([train_op, loss])
duration = time.time() - start_time
assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
if step % 10 == 0:
examples_per_sec = batchSize / duration
format_str = "%s: step %d, loss = %e (%.1f examples/sec; %.3f sec/batch"
print (format_str % (datetime.now(), step, loss_value, examples_per_sec, float(duration)))
if step % 100 == 0:
summary_str = session.run(summary_op)
summary_writer.add_summary(summary_str, step)
if step % 1000 == 0 or (step + 1) == maxSteps:
checkpoint_path = os.path.join(workingDir, 'model.ckpt')
saver.save(session, checkpoint_path, global_step = step)
And here's the various functions used to construct the graph:
import re
import tensorflow as tf
TOWER_NAME="tower"
NUM_EXAMPLES_PER_EPOCH = 50000
# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.95 # Learning rate decay factor.
INITIAL_LEARNING_RATE = 0.01 # Initial learning rate.
def _activation_summary(x):
"""Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measure the sparsity of activations.
Args:
x: Tensor
Returns:
nothing
"""
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
tf.histogram_summary(tensor_name + '/activations', x)
tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
#numChannel = tf.shape(x)[3]
#tf.image_summary(tensor_name + '/image', tf.reshape(x)
def _variable_on_cpu(name, shape, initializer):
"""Helper to create a Variable stored on CPU memory.
Args:
name: name of the variable
shape: list of ints
initializer: initializer for Variable
Returns:
Variable Tensor
"""
with tf.device('/cpu:0'):
var = tf.get_variable(name, shape, initializer=initializer, dtype=tf.float32)
return var
def _variable_with_weight_decay(name, shape, stddev, wd=None):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
var = _variable_on_cpu(name, shape, tf.truncated_normal_initializer(stddev=stddev))
if wd is not None:
weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def inference(images, dropout):
# conv1
with tf.variable_scope('conv1') as scope:
kernel = _variable_with_weight_decay('weights', shape=[5, 5, 1, 32], stddev=5e-2)
conv = tf.nn.conv2d(images, kernel, [1,1,1,1], padding='SAME')
biases = _variable_on_cpu('biases', [32], tf.constant_initializer(0.1))
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv1)
# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1')
# conv2
with tf.variable_scope('conv2') as scope:
kernel = _variable_with_weight_decay('weights', shape=[3, 3, 32, 64], stddev=5e-2)
conv = tf.nn.conv2d(pool1, kernel, [1,1,1,1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv2)
# pool2
pool2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2')
# conv3
with tf.variable_scope('conv3') as scope:
kernel = _variable_with_weight_decay('weights', shape=[3, 3, 64, 64], stddev=5e-2)
conv = tf.nn.conv2d(pool2, kernel, [1,1,1,1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv3)
# pool 3
pool3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool3')
# fully connected 4
with tf.variable_scope('full4') as scope:
batchSize = pool3.get_shape()[0].value
flattened = tf.reshape(pool3, [batchSize, -1])
dim = flattened.get_shape()[1].value
weights = _variable_with_weight_decay('weights', shape=[dim, 256], stddev=5e-2)
biases = _variable_on_cpu('biases', [256], tf.constant_initializer(0.1))
full4 = tf.nn.relu(tf.matmul(flattened, weights) + biases, name=scope.name)
full4_dropout = tf.nn.dropout(full4, dropout)
_activation_summary(full4)
#_activation_summary(full4_dropout)
# fully connected 5
with tf.variable_scope('full5') as scope:
weights = _variable_with_weight_decay('weights', [256, 128], stddev=5e-2)
biases = _variable_on_cpu('biases', [128], tf.constant_initializer(0.1))
full5 = tf.nn.relu(tf.matmul(full4_dropout, weights) + biases, name=scope.name)
full5_dropout = tf.nn.dropout(full5, dropout)
_activation_summary(full5)
#_activation_summary(full5_dropout)
# softmax
with tf.variable_scope('softmax_linear') as scope:
weights = _variable_with_weight_decay('weights', [128, 2], stddev=1/128.0)
biases = _variable_on_cpu('biases', [2], tf.constant_initializer(0.0))
softmax_linear = tf.add(tf.matmul(full5_dropout, weights), biases, name=scope.name)
_activation_summary(softmax_linear)
return softmax_linear
def loss(logits, labels):
labels = tf.cast(labels, tf.float32)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, labels, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
return tf.add_n(tf.get_collection('losses'), name='total_loss'), cross_entropy_mean
def _add_loss_summaries(total_loss):
"""Add summaries for losses in CIFAR-10 model.
Generates moving average for all losses and associated summaries for
visualizing the performance of the network.
Args:
total_loss: Total loss from loss().
Returns:
loss_averages_op: op for generating moving averages of losses.
"""
# Compute the moving average of all individual losses and the total loss.
loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
losses = tf.get_collection('losses')
loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
for l in losses + [total_loss]:
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
tf.scalar_summary(l.op.name +' (raw)', l)
tf.scalar_summary(l.op.name, loss_averages.average(l))
return loss_averages_op
def train(loss, step, batchSize):
numBatchesPerEpoch = NUM_EXAMPLES_PER_EPOCH / batchSize
decay_steps = int(numBatchesPerEpoch * NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
step,
decay_steps,
LEARNING_RATE_DECAY_FACTOR,
staircase=True)
tf.scalar_summary('learning_rate', lr)
loss_averages_op = _add_loss_summaries(loss)
# compute gradients
with tf.control_dependencies([loss_averages_op]):
opt = tf.train.GradientDescentOptimizer(lr)
grads = opt.compute_gradients(loss)
# apply gradients
apply_gradient_op = opt.apply_gradients(grads, global_step = step)
# add histograms for trainable variables
for var in tf.trainable_variables():
tf.histogram_summary(var.op.name, var)
# add histograms for gradients:
for grad, var in grads:
if grad is not None:
tf.histogram_summary(var.op.name + '/gradients', grad)
# Track the moving average of all trainable variables
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, step)
variable_averages_op = variable_averages.apply(tf.trainable_variables())
with tf.control_dependencies([apply_gradient_op, variable_averages_op]):
train_op = tf.no_op(name='train')
return train_op