Suspend a Erlang process by using receive after infinity timeout - process

I'm new to Erlang and I want to suspend in a function. I use receive with infinity timeout, my function looks like:
suspend() ->
receive
after
infinity->ok
end.
When I ran dialyzer tool, it return "Function has no local return". Should I replace this function with timer:sleep(infinity). For suspend, which one is better? Thank you so much.

The function timer:sleep/1 is defined as:
sleep(T) ->
receive
after T -> ok
end.
which is essentially the same as your suspend/0 function, so either approach would work. I'd advise using timer:sleep/1, though, as it's already defined for you, and anyone reading it will instantly know what it is and what it does.

Related

Is there a use for the "with" function that I can't achieve by "apply", "run", "also" or "let" in Kotlin?

When would we ever need with in Kotlin if we can already use apply, run, also and let?
Can anyone give me a clear example?
In most situations, a with call can be transformed to a run like this:
with(foo) {
// some code ...
}
// is the same as:
foo.run {
// the same code ...
}
run and with will both return the lambda result, and will use foo as the lambda receiver.
However, I can think of one case where this wouldn't work - when foo declares its own run method that takes a lambda, e.g.
// having something like this isn't too uncommon, right?
fun run(x: () -> Unit) {}
The lambda type doesn't have to be exactly the same as the scope function run. Any function type should work. Then overload resolution wouldn't resolve to the built-in run.
You can force the resolution by doing some casts, but using with in this case is much better. Don't you agree?
I don’t think there’s any better example than with(context). Maybe it’s not clear if English isn’t one of your primary languages, but it semantically is translated into English much clearer than context.run when the object is being used to produce a result but isn’t the primary actor, so it makes code a little easier to read.
This of course raises the question of why run exists. Well, it semantically makes more sense in English when the object is the thing doing the action. In English, the context of an action is what you’re doing something with. But if the object is what is directly producing the result, then it is running the action.
Also, you can’t do ?.with.

#Around aspect and Kotlin suspended function

I try to understand how to create an #Around aspect for a Kotlin’s suspended function (for example, to measure time spent in this function, or for a custom #Transactional aspect):
#Timed("my-timer")
suspend fun test() {
println("before")
delay(50) // invokes ProceedingJoinPoint#proceed() before this line
println("after")
}
Since this function has a suspend function call, the #Around aspect’s proceed function will be invoked right before delay() call. But obviously I’d like to measure full time spent in the function.
What is the right way to solve it? Maybe I can somehow subscribe on the last continuation in the method, or smth like that?
I think you can solve your problem easily, if you want to measure, the execution time of function, you can do it using built-in functionality like this:
val time = measureTimeMillis {
// yourSuperFunc()
}
Also, you can use measureNanoTime. For full reference look at here.
This is tracked by https://github.com/spring-projects/spring-framework/issues/22462 and will most likely be fixed in 5.3
The same issue happens for #Transactional.

Usage of CompletableFuture's exceptionally method in Kotlin

I'm trying to handle CompletableFuture exceptions in Kotlin, but I'm not able to figure out how to supply the appropriate parameters. So, for example, I have:
CompletableFuture.runAsync { "sr" }
.exceptionally{e -> {}}
but then the compiler complains Cannot infer type parameter T.
How do I fix this?
Quite a tricky case which becomes tricky because of some Kotlin magic :)
The direct solution to your problem would be the following code:
CompletableFuture.runAsync {"sr"}
.exceptionally({e -> null})
The detailed explanation goes here:
The runAsync method accepts a Runnable which means after execution it will return Void. The function passed to exceptionally method must match the generic parameter of the CompletableFuture so in this particular case, you need to help a compiler by returning null explicitly.
So the following will compile without problems:
CompletableFuture.runAsync {"sr"}
.exceptionally({null})
CompletableFuture.runAsync {}
.exceptionally({null})
In the first case, the "sr" String will simply be ignored and not returned since the runAsync accepts a Runnable.
You probably wanted to do something like:
CompletableFuture.supplyAsync {"sr"}
.exceptionally({"sr_exceptional"})
or:
CompletableFuture.supplyAsync {"sr"}
.exceptionally({e -> "sr_exceptional"})

Alternative to the try (?) operator suited to iterator mapping

In the process of learning Rust, I am getting acquainted with error propagation and the choice between unwrap and the ? operator. After writing some prototype code that only uses unwrap(), I would like to remove unwrap from reusable parts, where panicking on every error is inappropriate.
How would one avoid the use of unwrap in a closure, like in this example?
// todo is VecDeque<PathBuf>
let dir = fs::read_dir(&filename).unwrap();
todo.extend(dir.map(|dirent| dirent.unwrap().path()));
The first unwrap can be easily changed to ?, as long as the containing function returns Result<(), io::Error> or similar. However, the second unwrap, the one in dirent.unwrap().path(), cannot be changed to dirent?.path() because the closure must return a PathBuf, not a Result<PathBuf, io::Error>.
One option is to change extend to an explicit loop:
let dir = fs::read_dir(&filename)?;
for dirent in dir {
todo.push_back(dirent?.path());
}
But that feels wrong - the original extend was elegant and clearly reflected the intention of the code. (It might also have been more efficient than a sequence of push_backs.) How would an experienced Rust developer express error checking in such code?
How would one avoid the use of unwrap in a closure, like in this example?
Well, it really depends on what you wish to do upon failure.
should failure be reported to the user or be silent
if reported, should one failure be reported or all?
if a failure occur, should it interrupt processing?
For example, you could perfectly decide to silently ignore all failures and just skip the entries that fail. In this case, the Iterator::filter_map combined with Result::ok is exactly what you are asking for.
let dir = fs::read_dir(&filename)?;
let todos.extend(dir.filter_map(Result::ok));
The Iterator interface is full of goodies, it's definitely worth perusing when looking for tidier code.
Here is a solution based on filter_map suggested by Matthieu. It calls Result::map_err to ensure the error is "caught" and logged, sending it further to Result::ok and filter_map to remove it from iteration:
fn log_error(e: io::Error) {
eprintln!("{}", e);
}
(|| {
let dir = fs::read_dir(&filename)?;
todo.extend(dir
.filter_map(|res| res.map_err(log_error).ok()))
.map(|dirent| dirent.path()));
})().unwrap_or_else(log_error)

Which one is better for me to use: "defer-panic-recover" or checking "if err != nil { //dosomething}" in golang?

I've made a large program that opens and closes files and databases, perform writes and reads on them etc among other things. Since there no such thing as "exception handling in go", and since I didn't really know about "defer" statement and "recover()" function, I applied error checking after every file-open, read-write, database entry etc. E.g.
_,insert_err := stmt.Run(query)
if insert_err != nil{
mylogs.Error(insert_err.Error())
return db_updation_status
}
For this, I define db_updation_status at the beginning as "false" and do not make it "true" until everything in the program goes right.
I've done this in every function, after every operation which I believe could go wrong.
Do you think there's a better way to do this using defer-panic-recover? I read about these here http://golang.org/doc/articles/defer_panic_recover.html, but can't clearly get how to use them. Do these constructs offer something similar to exception-handling? Am I better off without these constructs?
I would really appreciate if someone could explain this to me in a simple language, and/or provide a use case for these constructs and compare them to the type of error handling I've used above.
It's more handy to return error values - they can carry more information (advantage to the client/user) than a two valued bool.
What concerns panic/recover: There are scenarios where their use is completely sane. For example, in a hand written recursive descent parser, it's quite a PITA to "bubble" up an error condition through all the invocation levels. In this example, it's a welcome simplification if there's a deferred recover at the top most (API) level and one can report any kind of error at any invocation level using, for example
panic(fmt.Errorf("Cannot %v in %v", foo, bar))
If an operation can fail and returns an error, than checking this error immediately and handling it properly is idiomatic in go, simple and nice to check if anything gets handled properly.
Don't use defer/recover for such things: Needed cleanup actions are hard to code, especially if stuff gets nested.
The usual way to report an error to a caller is to return an error as an extra return value. The canonical Read method is a well-known instance; it returns a byte count and an error.
But what if the error is unrecoverable? Sometimes the program simply cannot continue.
For this purpose, there is a built-in function panic that in effect creates a run-time error that will stop the program (but see the next section). The function takes a single argument of arbitrary type—often a string—to be printed as the program dies. It's also a way to indicate that something impossible has happened, such as exiting an infinite loop.
http://golang.org/doc/effective_go.html#errors