In Google's Big query, is there a way to clone (copy the structure alone) a table without data?
bq cp doesn't seem to have an option to copy structure without data.
And Create table as Select (CTAS) with filter such as "1=2" does create the table without data. But, it doesn't copy the partitioning/clustering properties.
BigQuery now supports CREATE TABLE LIKE explicitly for this purpose.
See documentation linked below:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_table_like
You can use DDL and limit 0, but you need to express partitioning and clustering in the query as well
#standardSQL
CREATE TABLE mydataset.myclusteredtable
PARTITION BY DATE(timestamp)
CLUSTER BY
customer_id
AS SELECT * FROM mydataset.myothertable LIMIT 0
If you want to clone structure of table along with partitioning/clustering properties w/o having need in knowing what exactly those partitioning/clustering properties - follow below steps:
Step 1: just copy your_table to new table - let's say your_table_copy. This will obviously copy whole table including all properties (including such like descriptions, partition's expiration etc. - which is very simple to miss if you will try to set them manually) and data. Note: copy is cost free operation
Step 2: To get rid of data in newly created table - run below query statement
SELECT * FROM `project.dataset.your_table_copy` LIMIT 0
while running above make sure you set project.dataset.your_table_copy as destination table with 'Overwrite Table' as 'Write Preference'. Note: this is also cost free step (because of LIMIT 0)
You can easily do both above steps from within Web UI or Command Line or API or any client of your choice - whatever you are most comfortable with
This is possible with the BQ CLI.
First download the schema of the existing table:
bq show --format=prettyjson project:dataset.table | jq '.schema.fields' > table.json
Then, create a new table with the provided schema and required partitioning:
bq mk \
--time_partitioning_type=DAY \
--time_partitioning_field date_field \
--require_partition_filter \
--table dataset.tablename \
table.json
See more info on bq mk options: https://cloud.google.com/bigquery/docs/tables
Install jq with: npm install node-jq
You can use BigQuery API to run a select, as you suggested, which will return an empty result and set the partition and cluster fields.
This is an example (Only partition but cluster works as well)
curl --request POST \
'https://www.googleapis.com/bigquery/v2/projects/myProject/jobs' \
--header 'Authorization: Bearer [YOUR_BEARER_TOKEN]' \
--header 'Accept: application/json' \
--header 'Content-Type: application/json' \
--data '{"configuration":{"query":{"query":"SELECT * FROM `Project.dataset.audit` WHERE 1 = 2","timePartitioning":{"type":"DAY"},"destinationTable":{"datasetId":"datasetId","projectId":"projectId","tableId":"test"},"useLegacySql":false}}}' \
--compressed
Result
Finally, I went with below python script to detect the schema/partitioning/clustering properties to re-create(clone) the clustered table without data. I hope we get an out of the box feature from bigquery to clone a table structure without the need for a script such as this.
import commands
import json
BQ_EXPORT_SCHEMA = "bq show --schema --format=prettyjson %project%:%dataset%.%table% > %path_to_schema%"
BQ_SHOW_TABLE_DEF="bq show --format=prettyjson %project%:%dataset%.%table%"
BQ_MK_TABLE = "bq mk --table --time_partitioning_type=%partition_type% %optional_time_partition_field% --clustering_fields %clustering_fields% %project%:%dataset%.%table% ./%cluster_json_file%"
def create_table_with_cluster(bq_project, bq_dataset, source_table, target_table):
cmd = BQ_EXPORT_SCHEMA.replace('%project%', bq_project)\
.replace('%dataset%', bq_dataset)\
.replace('%table%', source_table)\
.replace('%path_to_schema%', source_table)
commands.getstatusoutput(cmd)
cmd = BQ_SHOW_TABLE_DEF.replace('%project%', bq_project)\
.replace('%dataset%', bq_dataset)\
.replace('%table%', source_table)
(return_value, output) = commands.getstatusoutput(cmd)
bq_result = json.loads(output)
clustering_fields = bq_result["clustering"]["fields"]
time_partitioning = bq_result["timePartitioning"]
time_partitioning_type = time_partitioning["type"]
time_partitioning_field = ""
if "field" in time_partitioning:
time_partitioning_field = "--time_partitioning_field " + time_partitioning["field"]
clustering_fields_list = ",".join(str(x) for x in clustering_fields)
cmd = BQ_MK_TABLE.replace('%project%', bq_project)\
.replace('%dataset%', bq_dataset)\
.replace('%table%', target_table)\
.replace('%cluster_json_file%', source_table)\
.replace('%clustering_fields%', clustering_fields_list)\
.replace('%partition_type%', time_partitioning_type)\
.replace('%optional_time_partition_field%', time_partitioning_field)
commands.getstatusoutput(cmd)
create_table_with_cluster('test_project', 'test_dataset', 'source_table', 'target_table')
Related
i'd like to transfer data from an S3 bucket to BQ every minute using the runtime parameter to define which folder to take the data from but i get : Missing argument for parameter runtime.
the parameter is defined under the --params with "data_path"
bq mk \
--transfer_config \
--project_id=$project_id \
--data_source=amazon_s3 \
--display_name=s3_tranfer \
--target_dataset=$ds \
--schedule=None \
--params='{"destination_table_name_template":$ds,
"data_path":"s3://bucket/test/${runtime|\"%M\"}/*",
"access_key_id":"***","secret_access_key":"***","file_format":"JSON"}'
Apparently you have to add the run_time in the destination_table_name_template
so the cmd line works like this:
bq mk \
--transfer_config \
--project_id=$project_id \
--data_source=amazon_s3 \
--display_name=s3_transfer \
--target_dataset=demo \
--schedule=None \
--params='{"destination_table_name_template":"demo_${run_time|\"%Y%m%d%H\"}",
"data_path":"s3://bucket/test/{runtime|\"%M\"}/*",
"access_key_id":"***","secret_access_key":"***","file_format":"JSON"}'
the runtime has to be the same as the partition_id. above the partition is hourly. the records in the files have to belong to the that partition_id or the jobs will fail. to see your partition ids use:
SELECT table_name, partition_id, total_rows
FROM `mydataset.INFORMATION_SCHEMA.PARTITIONS`
WHERE partition_id IS NOT NULL
but, important to mention. it's not a good idea to rely on this service for an every minute ingestion into BigQuery since your jobs get queued and can take several minutes. the service seems to be designed to run only once every 24H.
I have a csv file on my computer. I would like to load this CSV file into a BigQuery table.
I'm using the following command from a terminal:
bq load --apilog=./logs --field_delimiter=$(printf ';') --skip_leading_rows=1 --autodetect dataset1.table1 mycsvfile.csv myschema.json
The command in my terminal doesn't give any output. In the GCP interface, I see no job being created, which makes me think the request doesn't even reach GCP.
In the logs file (from the --apilog parameter) I get informations about the request being made, and it ends with this:
INFO:googleapiclient.discovery:URL being requested: POST https://bigquery.googleapis.com/upload/bigquery/v2/projects/myproject/jobs?uploadType=resumable&alt=json
and that's it. No matter how long I wait, nothing happens.
You are mixing --autodetect with myschema.json, something like the following shoud work:
bq load --apilog=logs \
--source_format=CSV \
--field_delimiter=';' \
--skip_leading_rows=1 \
--autodetect \
dataset.table \
mycsvfile.csv
If you continue having issues, please post the content of the apilog, the line you shared doesn't seem to be an error. There should be more than one line and normally contains the error in a json structure, for instance:
"reason": "invalid",
"message": "Provided Schema does not match Table project:dataset.table. Field users is missing in new schema"
I'm not sure why you are using
--apilog=./logs
I did not find this in the bq load documentation, please clarify.
Based on that, maybe the bq load command could be the issue, you can try with something like:
bq load \
--autodetect \
--source_format=CSV \
--skip_leading_rows= 1 \
--field_delimiter=';'
dataset1.table1 \
gs://mybucket/mycsvfile.csv \
./myschema.json
If it fails, please check your job list to get the job created, then use bq show to view the information about that job, there you should find an error messag which can help you to determine the cause of the issue.
I am trying to import the data from teradata into HDFS location.
I have access to view for that database. So I created a staging table in another database. But when I try to run the code it says error
Error: Running Sqoop version: 1.4.6.2.6.5.0-292 18/12/23 21:49:41 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 18/12/23 21:49:41 ERROR tool.BaseSqoopTool: Error parsing arguments for import:staging-table, t_hit_data_01_staging, –clear-staging-table, --query, select * from table1 where cast(date1 as Date) <= date '2017-09-02' and $CONDITIONS, --target-dir, <>, --split-by, date1, -m, 25
I have given the staging table details in the code and ran it. but throws error.
(Error parsing arguments from import and as un-recognized arguments from staging table)
sqoop import \
--connect jdbc:teradata://<server_link>/Database=db01 \
--connection-manager org.apache.sqoop.teradata.TeradataConnManager \
--username <UN> \
--password <PWD> \
–-staging-table db02.table1_staging –clear-staging-table \
--query "select * from table1 where cast(date1 as Date) <= date '2017-09-02' and \$CONDITIONS " \
--target-dir '<hdfs location>' \
--split-by date1 -m 25`
The data should be loaded into the HDFS location, using the staging table in another database in Teradata.Then later on changing the where clause it sqoop should create another file under the same folder in HDFS location. Example: part-0000, next file as part -0001 etc.,
I dont think there is a staging option available for import command.
https://sqoop.apache.org/docs/1.4.0-incubating/SqoopUserGuide.html
I've built an application using DynamoDB Local and now I'm at the point where I want to setup on AWS. I've gone through numerous tools but have had no success finding a way to take my local DB and setup the schema and migrate data into AWS.
For example, I can get the data into a CSV format but AWS has no way to recognize that. It seems that I'm forced to create a Data Pipeline... Does anyone have a better way to do this?
Thanks in advance
As was mentioned earlier, DynamoDB local is there for testing purposes. However, you can still migrate your data if you need to. One approach would be to save data into some format, like json or csv and store it into S3, and then use something like lambdas or your own server to read from S3 and save into your new DynamoDB. As for setting up schema, You can use the same code you used to create your local table to create remote table via AWS SDK.
you can create a standalone application to get the list of tables from the local dynamoDB and create them in your AWS account after that you can get all the data for each table and save them.
I'm not sure which language you familiar with but will explain some API might help you in Java.
DynamoDB.listTables();
DynamoDB.createTable(CreateTableRequest);
example about how to create table using the above API
ProvisionedThroughput provisionedThroughput = new ProvisionedThroughput(1L, 1L);
try{
CreateTableRequest groupTableRequest = mapper.generateCreateTableRequest(Group.class); //1
groupTableRequest.setProvisionedThroughput(provisionedThroughput); //2
// groupTableRequest.getGlobalSecondaryIndexes().forEach(index -> index.setProvisionedThroughput(provisionedThroughput)); //3
Table groupTable = client.createTable(groupTableRequest); //4
groupTable.waitForActive();//5
}catch(ResourceInUseException e){
log.debug("Group table already exist");
}
1- you will create TableRequest against mapping
2- setting the provision throughput and this will vary depend on your requirements
3- if the table has global secondary index you can use this line (Optional)
4- the actual table will be created here
5- the thread will be stopped till the table become active
I didn't mention the API related to data access (insert ... etc), I supposed that you're familiar with since you already use them in local dynamodb
I did a little work setting up my local dev environment. I use SAM to create the dynamodb tables in AWS. I didn't want to do the work twice so I ended up copying the schema from AWS to my local instance. The same approach can work the other way around.
aws dynamodb describe-table --table-name chess_lobby \
| jq '.Table' \
| jq 'del(.TableArn)' \
| jq 'del(.TableSizeBytes)' \
| jq 'del(.TableStatus)' \
| jq 'del(.TableId)' \
| jq 'del(.ItemCount)' \
| jq 'del(.CreationDateTime)' \
| jq 'del(.GlobalSecondaryIndexes[].IndexSizeBytes)' \
| jq 'del(.ProvisionedThroughput.NumberOfDecreasesToday)' \
| jq 'del(.GlobalSecondaryIndexes[].IndexStatus)' \
| jq 'del(.GlobalSecondaryIndexes[].IndexArn)' \
| jq 'del(.GlobalSecondaryIndexes[].ItemCount)' \
| jq 'del(.GlobalSecondaryIndexes[].ProvisionedThroughput.NumberOfDecreasesToday)' > chess_lobby.json
aws dynamodb create-table \
--cli-input-json file://chess_lobby.json \
--endpoint-url http://localhost:8000
The top command uses describe table aws cli capabilities to get the schema json. Then I use jq to delete all unneeded keys, since create-table is strict with its parameter validation. Then I can use create-table to create the table in the local environent by using the --endpoint-url command.
You can use the --endpoint-url parameter on the top command instead to fetch your local schema and then use the create-table without the --endpoint-url parameter to create it directly in AWS.
I am trying to automate the creation of schemas and some tables into that newly created schema. I am trying to write a script in powershell to help me achieve the same. I have been able to create the schema, however, I cannot create the tables into that schema.
I am passing the new schema to be created as a variable to powershell.
script so far (based off the solution from the following answer. StackOverFlow Solution):
$MySchema=$args[0]
$CreateSchema = 'CREATE SCHEMA \"'+$MySchema+'\"; set schema '''+$MySchema+''';'
write-host $CreateSchema
C:\PostgreSQL\9.3\bin\psql.exe -h $DBSERVER -U $DBUSER -d $DBName -w -c $CreateSchema
# To create tables
C:\PostgreSQL\9.3\bin\psql.exe -h $DBSERVER -U $DBUSER -d $DBName -w -f 'E:\automation\scripts\create-tables.sql' -v schema=$MySchema
At the execution, I see the following error:
psql:E:/automation/scripts/create-tables.sql:11: ERROR: no schema has been selected to create in
The content of create-tables.sql is:
SET search_path TO :schema;
CREATE TABLE testing (
id SERIAL,
QueryDate varchar(255) NULL
);
You've got this in your first step:
$CreateSchema = 'CREATE SCHEMA \"'+$MySchema+'\"; set schema '''+$MySchema+''';'
Take out that set schema - it's erroneous and causing the schema not to be created. Then on the next step you wind up with an empty search path (because the schema never got created), which is why you get that error.