I'm a newbie when it comes to AWS and Tensorflow and I've been learning about CNNs over the last week via Udacity's Machine Learning course.
Now I've a need to use an AWS instance of a GPU. I launched a p2.xlarge instance of Deep Learning AMI with Source Code (CUDA 8, Ubuntu) (that's what they recommended)
But now, it seems that tensorflow is not using the GPU at all. It's still training using the CPU. I did some searching and I found some answers to this problem and none of them seemed to work.
When I run the Jupyter notebook, it still uses the CPU
What do I do to get it to run on the GPU and not the CPU?
The problem of tensorflow not detecting GPU can possibly be due to one of the following reasons.
Only the tensorflow CPU version is installed in the system.
Both tensorflow CPU and GPU versions are installed in the system, but the Python environment is preferring CPU version over GPU version.
Before proceeding to solve the issue, we assume that the installed environment is an AWS Deep Learning AMI having CUDA 8.0 and tensorflow version 1.4.1 installed. This assumption is derived from the discussion in comments.
To solve the problem, we proceed as follows:
Check the installed version of tensorflow by executing the following command from the OS terminal.
pip freeze | grep tensorflow
If only the CPU version is installed, then remove it and install the GPU version by executing the following commands.
pip uninstall tensorflow
pip install tensorflow-gpu==1.4.1
If both CPU and GPU versions are installed, then remove both of them, and install the GPU version only.
pip uninstall tensorflow
pip uninstall tensorflow-gpu
pip install tensorflow-gpu==1.4.1
At this point, if all the dependencies of tensorflow are installed correctly, tensorflow GPU version should work fine. A common error at this stage (as encountered by OP) is the missing cuDNN library which can result in following error while importing tensorflow into a python module
ImportError: libcudnn.so.6: cannot open shared object file: No such
file or directory
It can be fixed by installing the correct version of NVIDIA's cuDNN library. Tensorflow version 1.4.1 depends upon cuDNN version 6.0 and CUDA 8, so we download the corresponding version from cuDNN archive page (Download Link). We have to login to the NVIDIA developer account to be able to download the file, therefore it is not possible to download it using command line tools such as wget or curl. A possible solution is to download the file on host system and use scp to copy it onto AWS.
Once copied to AWS, extract the file using the following command:
tar -xzvf cudnn-8.0-linux-x64-v6.0.tgz
The extracted directory should have structure similar to the CUDA toolkit installation directory. Assuming that CUDA toolkit is installed in the directory /usr/local/cuda, we can install cuDNN by copying the files from the downloaded archive into corresponding folders of CUDA Toolkit installation directory followed by linker update command ldconfig as follows:
cp cuda/include/* /usr/local/cuda/include
cp cuda/lib64/* /usr/local/cuda/lib64
ldconfig
After this, we should be able to import tensorflow GPU version into our python modules.
A few considerations:
If we are using Python3, pip should be replaced with pip3.
Depending upon user privileges, the commands pip, cp and ldconfig may require to be run as sudo.
Related
I am trying to use my local GPU to train an EfficientDetD0 model. I already have a good pipeline (that works on Google Colab for example), I modified it a bit to use it locally, but one problem happens every time I launch the training.
I use conda to install tensorflow-gpu with cuda and cudnn but it makes TensorFlow v2.4.1 environments and when I launch the training the Object Detection API automatically install TensorFlow V2.5.0. So my env is not using the gpu for the training because cuda and cudnn are waiting for TensorFlow to be v2.4.1 and not v2.5.0.
Is there a way to get the Object Detection API in v2.4.1 and not v2.5.0 ?
I tried many things but it doesn't work (training is failing or going for CPU training).
Here is the code that install dependencies and overwrite TensorFlow version to TensorFlow v2.5.0:
os.system("cp object_detection/packages/tf2/setup.py .")
os.system("python -m pip install .")
SYSTEM:
gpu : Nvidia RTX 3070
os : Ubuntu 20.04 LTS
tensorflow: 2.4.1
P.S.: I go with conda install -c conda-forge tensorflow-gpu for installing TensorFlow, cuda and cudnn in my training env because manually there was a dependency problem, so I took the easy way.
EDIT : solution found explained in comments.
Follow these steps to install specific version of tensorflow gpu
1. Set Up Anaconda Environments
conda create -n tf_gpu cudatoolkit=11.0
2. Activate the new Environment
source activate tf_gpu
3. Install tensorflow-gpu 2.4.1
pip install tensorflow==2.4.1
Try to run object_detection without "installing" it. Dont run setup.py. Just setup the neccesery paths and packages manually.
Or edit the setup.py to skip installing the specific verison of TF. I quess that this version is a requirement of some of the packages installed in setup.py.
I use the object_detection without running the setup.py or doing any "installation" without any problems.
Has anyone successfully installed Tensorflow-GPU on WSL2 with NVIDIA GPUs? I have Ubuntu 18.04 on WSL2, but am struggling to get NVIDIA drivers installed. Any help would be appreciated as I'm lost.
So I have just got this running.
The steps you need to follow are here. To summarise them:
sign up for windows insider program and get the development builds of windows so that you have the latest version
Install wsl 2
Install Ubuntu from the windows store
Install the wsl 2 cuda driver on windows
Install cuda toolkit
Install cudnn (you can download the linux version from windows and then copy the file to linux)
If you are getting memory errors like 'cannot allocate memory' then you might need to increase the amount of memory wsl can get
Then install tensorflow-gpu
pray it works
bugs I hit along the way:
If when you open ubuntu for the first time you get an error you need to enable virutalisation in the bios
If you cannot run the ./Blackscholes example in the installation instructions you might not have the right build of windows! You must have the right version
if you are getting 'cannot allocate memory' errors when running tf you need to give wsl more ram. It only access half your ram by default
create a .wslconfig file under your user directory in windows with the amount of memory you want. Mine looks like:
[wsl2]
memory=16GB
Edit after running some code
This is much slower then when I was running on windows directly. I went from 1 minute per epoch to 5 minutes. I'm just going to dualboot.
These are the steps I had to follow for Ubuntu 20.04. I am no longer on dev channel, beta channel works fine for this use case and is much more stable.
Install WSL2
Install Ubuntu 20.04 from Windows Store
Install Nvidia Drivers for Windows from: https://developer.nvidia.com/cuda/wsl/download
Install nvcc inside of WSL with:
sudo apt install nvidia-cuda-toolkit
Check that it is there with:
nvcc --version
For my use case, I do data science and already had anaconda installed. I created an environment with:
conda create --name tensorflow
conda install tensorflow-gpu
Then just test it with this little python program with the environment activated:
import tensorflow as tf
tf.config.list_physical_devices('GPU')
sys_details = tf.sysconfig.get_build_info()
cuda = sys_details["cuda_version"]
cudnn = sys_details["cudnn_version"]
print(cuda, cudnn)
For reasons I do not understand, my machine was unable to find the GPU without installing the nvcc and actually gave an error message saying it could not find nvcc.
Online tutorials I had found which had you downloading CUDA and CUDNN separately but I thinkNVCC includes CUDNN since it is . . . there somehow.
I can confirm I am able to get this working without the need for Docker on WSL2 thanks to the following article:
https://qiita.com/Navier/items/cf551908bae707db4258
Be sure to update to driver version 460.15, not 455.41 as listed in the CUDA documentation.
Note, this does not work with the card in TCC mode (only WDDM). Also, be sure to place your files on the Linux file system (i.e. not on a mount drive, like /mnt/c/). Performance is significantly faster on the Linux file system (this has to do with the difference in implementation of WSL 1 vs. WSL 2; see 1, 2, and 3).
NOTE: See also Is the class generator (inheriting Sequence) thread safe in Keras/Tensorflow?
I just want to point out that using anaconda to install cudatoolkit and cudnn does not seem to work in wsl.
Maybe there is some problem with paths that make TF look for the needed files only in the system paths instead of the conda enviroments.
I am building a Deep Learning rig with a GeForce RTX 2060.
I am wanting to use baselines-stable which isn't tensorflow 2.0 compatible yet.
According to here and here, tensorflow-gpu-1.15 is only listed as compatible with CUDA 10.0, not CUDA 10.1.
Attempting to download CUDA from Nvidia, the option for Ubuntu 20.04 is not available for CUDA 10.0.
Searching the apt-cache does not result in CUDA 10.0 either.
$ sudo apt-cache policy nvidia-cuda-toolkit
[sudo] password for lansford:
nvidia-cuda-toolkit:
Installed: (none)
Candidate: 10.1.243-3
Version table:
10.1.243-3 500
500 http://us.archive.ubuntu.com/ubuntu focal/multiverse amd64 Packages
I would highly prefer not to have to reinstall the OS with an older version of Ubuntu. However experimenting with reinforcement learning was the motive for purchasing this PC.
I see some possible clues that it might be possible to build tensorflow-gpu-1.15 from source with cuda 10.1 support. I also saw a random comment that tensorflow-gpu-1.15 will just-work with tf 1.15, but I am not wanting to make a miss-step installing things until I have a signal that is the direction to go. Uninstalling things isn't always straightforward.
Should I install CUDA 10.1 and cross my fingers 1.15 will like it.
Should I download the install for CUDA 10.0 for a the older Ubuntu version and see if it will install anyway
Should I attempt to compile tensorflow from source against CUDA 10.1 (heh heh heh)
Should I install and older version of Ubuntu and hope I don't go obsolete too quickly.
Given the situation is there a way to run tensorflow 1.15 with gpu support on Ubuntu 20.04.1?
As this also bothered me I found a working solution that I think is more versatile than using docker containers.
The main idea is from here (not to claim credit from others).
To make a working solution for Ubuntu 20.04 and TensorFlow 1.15 one needs:
Cuda 10.0 (to work with tf 1.15).
I have some trouble finding this version because it's not officially available for Ubuntu 20.04. I resolved to the Ubuntu 18.04 version though which works fine.
Archive toolkits here.
Final toolkit for Ubuntu here (as it's obvious not 20.04 version is available).
I chose runfile as method which resulted into 1 main runfile and 1 patch runfile being available:
cuda_10.0.130_410.48_linux.run
cuda_10.0.130.1_linux.run
The toolkit can be safely installed using the instructions provided with no risk since each version allocates a different folder in the system (typically this would be /usr/local/cuda-10.0/).
The corresponding cudnn for cuda 10.0
I had this one from a previous installation but its shouldn't be hard to download it also. The version I used is cudnn-10.0-linux-x64-v7.6.5.32.tgz.
Cudnn basically just copies files in the right places (do not actually install anything that is). So, an extraction of the compressed file and copy to the folder would suffice:
$ sudo cp cuda/include/cudnn.h /usr/local/cuda-10.0/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda-10.0/lib64
$ sudo chmod a+r /usr/local/cuda-10.0/include/cudnn.h /usr/local/cuda-10.0/lib64/libcudnn*
Upto this point although installed the system is unaware of the presence of cuda 10.0. So, all call to it will fail as if non existent. We should update the relevant system environment for cuda 10.0. One way (there are others) system-wide is to create (in not existent) a /etc/profile.d/cuda.sh which will contain the update to the LD_LIBRARY_PATH variable. It should contain something like:
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda-11.3/lib64:/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH
This command would normally do the work:
$ sudo sh -c ‘echo export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda-11.3/lib64:/usr/local/cuda-10.0/lib64:\$LD_LIBRARY_PATH > /etc/profile.d/cuda.sh’
This requires a restart though to be evaluated I think. Anyway, this way the system will search for the relevant so files in:
a) /usr/local/cuda/lib64 (the default symbolic link) and it will fail
b) to the virtually same as the latter /usr/local/cuda-11.3/lib64 and also fail BUT it will search also
c) /usr/local/cuda-10.0/lib64 which will be successful.
The supported versions of python for cuda 10.0 ends with 3.7 so an older version should be installed. This means obligatory a virtual environment (since messing with system python is never not a good idea).
One can install python 3.7 for example using this repository which contains old (and new versions of python):
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt-get install python3.7
This just installs python3.7 to the system it does not make it default. The default is the previous one.
Create a virtual environment and add the desired python as the default interpreter. For me this works:
virtualenv -p python3.7 ~/tensorflow_1-15
which creates a new venv with Python 3.7 in it.
Now populate with all required modules and you are set to go.
I went ahead and went with the docker approach. The Tensorflow documentation seems to be pushing in that direction anyway. Using docker only the Nvidia driver needs to be installed. You do need to have nvidia support installed in docker for it to work.
This contains the CUDA environment with the Tensorflow version so I can work with 1.15 and with the latest 2.x versions of Tensorflow on the same computer which require different CUDA versions.
It doesn't install anything besides docker stuff to get messy on the computer and difficult to pull back out.
I can still install Tensorflow natively on the computer at some point in the future when the libraries become availabe without compiling from source.
Here is the command which launches jupyter and mounts the current directory from my computer to /tf/bob which shows up in jupyter.
docker run -it --mount type=bind,source="$(pwd)",target=/tf/bob -u $(id -u):$(id -g) -p 8888:8888 tensorflow/tensorflow:1.15.2-gpu-py3-jupyter
I've searched around and non of the solutions seem to pertain to me, so here I am.
I installed anaconda 5.1 for python 3.6, I downloaded and installed 64-Bit(x86)Installer(551 MB)
from
https://www.anaconda.com/download/#linux
I followed the directions here
https://docs.anaconda.com/anaconda/install/linux
I had the install prepend the path and install microsoft VS code.
I then attempt to install the CPU only tensorflow using anaconda as suggested here
https://www.tensorflow.org/install/install_linux#InstallingAnaconda
I try to install the binary for python 3.6 CPU only
https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.6.0-cp36-cp36m-linux_x86_64.whl
I get the following error
tensorflow-1.6.0-cp36-cp36m-linux_x86_64.whl is not a supported wheel on this platform.
I am running a Ubuntu 16.04 VM on windows 10.
edit: when I run this command
pip install --ignore-installed --upgrade tfBinaryURL
outside of the tensorflow environment it worked.
2nd edit:
Additionally I explored my tensorflow environment in my anaconda3 folder, and I noticed it only has python 2.7, so when I tried to install the cpu only tensorflow while in the enviroment for python 2.7 it worked.
Note : this question was initially asked on github, but it was asked to be here instead
I'm having trouble running tensorflow on gpu, and it does not seems to be the usual cuda's configuration problem, because everything seems to indicate cuda is properly setup.
The main symptom: when running tensorflow, my gpu is not detected (the code being run, and its output).
What differs from usual issues is that cuda seems properly installed and running ./deviceQuery from cuda samples is successful (output).
I have two graphical cards:
an old GTX 650 used for my monitors (I don't want to use that one with tensorflow)
a GTX 1060 that I want to dedicate to tensorflow
I use:
tensorflow-1.0.0
cuda-8.0 (ls -l /usr/local/cuda/lib64/libcud*)
cudnn-5.1.10
python-2.7.12
nvidia-drivers-375.26 (this was installed by cuda and replaced my distro driver package)
I've tried:
adding /usr/local/cuda/bin/ to $PATH
forcing gpu placement in tensorflow script using with tf.device('/gpu:1'): (and with tf.device('/gpu:0'): when it failed, for good measure)
whitelisting the gpu I wanted to use with CUDA_VISIBLE_DEVICES, in case the presence of my old unsupported card did cause problems
running the script with sudo (because why not)
Here are the outputs of nvidia-smi and nvidia-debugdump -l, in case it's useful.
At this point, I feel like I have followed all the breadcrumbs and have no idea what I could try else. I'm not even sure if I'm contemplating a bug or a configuration problem. Any advice about how to debug this would be greatly appreciated. Thanks!
Update: with the help of Yaroslav on github, I gathered more debugging info by raising log level, but it doesn't seem to say much about the device selection : https://gist.github.com/oelmekki/760a37ca50bf58d4f03f46d104b798bb
Update 2: Using theano detects gpu correctly, but interestingly it complains about cuDNN being too recent, then fallback to cpu (code ran, output). Maybe that could be the problem with tensorflow as well?
From the log output, it looks like you are running the CPU version of TensorFlow (PyPI: tensorflow), and not the GPU version (PyPI: tensorflow-gpu). Running the GPU version would either log information about the CUDA libraries, or an error if it failed to load them or open the driver.
If you run the following commands, you should be able to use the GPU in subsequent runs:
$ pip uninstall tensorflow
$ pip install tensorflow-gpu
None of the other answers here worked for me. After a bit of tinkering I found that this fixed my issues when dealing with Tensorflow built from binary:
Step 0: Uninstall protobuf
pip uninstall protobuf
Step 1: Uninstall tensorflow
pip uninstall tensorflow
pip uninstall tensorflow-gpu
Step 2: Force reinstall Tensorflow with GPU support
pip install --upgrade --force-reinstall tensorflow-gpu
Step 3: If you haven't already, set CUDA_VISIBLE_DEVICES
So for me with 2 GPUs it would be
export CUDA_VISIBLE_DEVICES=0,1
In my case:
pip3 uninstall tensorflow
is not enough. Because when reinstall with:
pip3 install tensorflow-gpu
It is still reinstall tensorflow with cpu not gpu.
So, before install tensorflow-gpu, I tried to remove all related tensor folders in site-packages uninstall protobuf, and it works!
For conclusion:
pip3 uninstall tensorflow
Remove all tensor folders in ~\Python35\Lib\site-packages
pip3 uninstall protobuf
pip3 install tensorflow-gpu
Might seem dumb but a sudo reboot has fixed the exact same problem for me and a couple others.
The answer that saved my day came from Mark Sonn. Simply add this to .bashrc and
source ~/.bashrc if you are on Linux:
export CUDA_VISIBLE_DEVICES=0,1
Previously I had to use this workaround to get tensorflow recognize my GPU:
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices(device_type="GPU")
tf.config.experimental.set_visible_devices(devices=gpus[0], device_type="GPU")
tf.config.experimental.set_memory_growth(device=gpus[0], enable=True)
Even though the code still worked, adding these lines every time is clearly not something I would want.
My version of tensorflow was built from source according to the documentation to get v2.3 support CUDA 10.2 and cudnn 7.6.5.
If anyone having trouble with that, I suggest doing a quick skim over the docs. Took 1.5 hours to build with bazel. Make sure you have gcc7 and bazel installed.
This error may be caused by your GPU's compute capability, CUDA officially supports GPU's compute capability within 3.5 ~ 5.0, you can check here: https://en.wikipedia.org/wiki/CUDA
In my case, the error was like this:
Ignoring visible gpu device (device: 0, name: GeForce GT 640M, pci bus id: 0000:01:00.0, compute capability: 3.0) with Cuda compute capability 3.0. The minimum required Cuda capability is 3.5.
For now we can only compile from source code on Linux (or mac OS) to break the '3.5~5.0' limit.
There are various system incompatible problems.
The requirement for libraries can vary from the version of TensorFlow.
During using python in interactive mode a lot of useful information is printing into stderr. What I suggest for TensorFlow with version 2.0 or more to call:
python3.8 -c "import tensorflow as tf; print('tf version:', tf.version); tf.config.list_physical_devices()"
After this command, you will observe missing libraries (or a version of it) for work with GPU in addition to requirements:
https://www.tensorflow.org/install/gpu#software_requirements
https://www.tensorflow.org/install/gpu#hardware_requirements
p.s. CUDA_VISIBLE_DEVICES should not have a real connection with TensorFlow, or it's more general - it's a way to customize available GPUs for all launched processes.
For anaconda users. I installed tensorflow-gpu via GUI using Anaconda Navigator and configured NVIDIA GPU as in tensorflow guide but tensorflow couldn't find the GPU anyway. Then I uninstalled tensorflow, always via GUI (see here) and reinstalled it via command line in an anaconda prompt issuing:
conda install -c anaconda tensorflow-gpu
and then tensorflow could find the GPU correctly.