I'm trying to decide, which one of the following I will use in practice for regression tasks: xgboost, lightgbm or catboost (python 3).
So, what are general idea behind each of them? Why should I choose one, but not another?
I'm not interested in very slight difference in the accuracy score like 0.781 vs 0.782. Result should be tenable, and my tool should be robust, convenient in use. The workhorse.
As I understand about these methods, Just how they are implemented is different, otherwise they have implemented GBM methods.
So you should just try to do some hyper parameter tuning.
Also, its good idea to read this paper:
catboost-vs-light-gbm-vs-xgboost
You cannot determine a priori which Tree algorithm (or any algorithm) will be automatically the best. This is because of the https://en.wikipedia.org/wiki/No_free_lunch_theorem
It's best to try them all out. You should also throw in Random Forest (RF) as another one to try.
I will say that http://CatBoost.ai (CB) does have one advantage over the others: if you have Categorical Variables, CB will most likely beat the others because it can handle categorical variables directly without One-Hot-Encoding.
You might try http://H2O.ai 's grid search which supports several algorithms (RF, XGBoost, GBM, Linear Regression) with Hypertuning of parameters to see which one works best. You can run this overnight. (CB is not included in H2O's grid search)
Related
I have to optimize the result of a process that depends on a large number of variables, i.e. a laser engraving system where the engraving depth depends on the laser speed, distance, power and so on.
The final objective is the minimization of the engraving time, or the maximization of the laser speed. All the other parameters can vary, but must stay within safe bounds.
I have never used any machine learning tools, but to my very limited knowledge this seems like a good use case for TensorFlow or any other machine learning library.
I would experimentally gather data points to train the algorithm, test it and then use a gradient descent optimizer to find the parameters (within bounds) that maximize the laser travel velocity.
Does this sound feasible? How would you approach such a problem? Can you link to any examples available online?
Thank you,
Riccardo
I’m not quite sure if I understood the problem correctly, would you add some example data and a desired output?
As far as I understood, It could be feasible to use TensorFlow, but I believe there are better solutions to that problem. Let me expand on this.
TensorFlow is a framework focused in the development of Deep Learning models. These usually require lots of data (the number really depends on the problem) but I don’t believe that just you manually gathering this data would be enough unless your team is quite big or already have some data gathered.
Also, as you have a minimization (or maximization) problem given variables that lay within a known range, I think this can be a case of Operations Research optimization instead of Machine Learning. Check this example of OR.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 2 years ago.
Improve this question
I am trying to tune a basic neural network as practice. (Based on an example from a coursera course: Neural Networks and Deep Learning - DeepLearning.AI)
I face the issue of the random weight initialization. Lets say I try to tune the number of layers in the network.
I have two options:
1.: set the random seed to a fixed value
2.: run my experiments more times without setting the seed
Both version has pros and cons.
My biggest concern is that if I use a random seed (e.g.: tf.random.set_seed(1)) then the determined values can be "over-fitted" to the seed and may not work well without the seed or if the value is changed (e.g.: tf.random.set_seed(1) -> tf.random.set_seed(2). On the other hand, if I run my experiments more times without random seed then I can inspect less option (due to limited computing capacity) and still only inspect a subset of possible random weight initialization.
In both cases I feel that luck is a strong factor in the process.
Is there a best practice how to handle this topic?
Has TensorFlow built in tools for this purpose? I appreciate any source of descriptions or tutorials. Thanks in advance!
Tuning hyperparameters in deep learning (generally in machine learning) is a common issue. Setting the random seed to a fixed number ensures reproducibility and fair comparison. Repeating the same experiment will lead to the same outcomes. As you probably know, best practice to avoid over-fitting is to do a train-test split of your data and then use k-fold cross-validation to select optimal hyperparameters. If you test multiple values for a hyperparameter, you want to make sure other circumstances that might influence the performance of your model (e.g. train-test-split or weight initialization) are the same for each hyperparameter in order to have a fair comparison of the performance. Therefore I would always recommend to fix the seed.
Now, the problem with this is, as you already pointed out, the performance for each model will still depend on the random seed, like the particular data split or weight initialization in your case. To avoid this, one can do repeated k-fold-cross validation. That means you repeat the k-fold cross-validation multiple times, each time with a different seed, select best parameters of that run, test on test data and average the final results to get a good estimate of performance + variance and therefore eliminate the influence the seed has in the validation process.
Alternatively you can perform k-fold cross validation a single time and train each split n-times with a different random seed (eliminating the effect of weight initialization, but still having the effect of the train-test-split).
Finally TensorFlow has no build-in tool for this purpose. You as practitioner have to take care of this.
There is no an absolute right or wrong answer to your question. You are almost answered your own question already. In what follows, however, I will try to expand more, via the following points:
The purpose of random initialization is to break the symmetry that makes neural networks fail to learn:
... the only property known with complete certainty is that the
initial parameters need to “break symmetry” between different units.
If two hidden units with the same activation function are connected to
the same inputs, then these units must have different initial
parameters. If they have the same initial parameters, then a
deterministic learning algorithm applied to a deterministic cost and
model will constantly update both of these units in the same way...
Deep Learning (Adaptive Computation and Machine Learning series)
Hence, we need the neural network components (especially weights) to be initialized by different values. There are some rules of thumb of how to choose those values, such as the Xavier initialization, which samples from normal distribution with mean of 0 and special variance based on the number of the network layer. This is a very interesting article to read.
Having said so, the initial values are important but not extremely critical "if" proper rules are followed, as per mentioned in point 2. They are important because large or improper ones may lead to vanishing or exploding gradient problems. On the other hand, different "proper" weights shall not hugely change the final results, unless they are making the aforementioned problems, or getting the neural network stuck at some local maxima. Please note, however, the the latter depends also on many other aspects, such as the learning rate, the activation functions used (some explode/vanish more than others: this is a great comparison), the architecture of the neural network (e.g. fully connected, convolutional ..etc: this is a cool paper) and the optimizer.
In addition to point 2, bringing a good learning optimizer into the bargain, other than the standard stochastic one, shall in theory not let a huge influence of the initial values to affect the final results quality, noticeably. A good example is Adam, which provides a very adaptive learning technique.
If you still get a noticeably-different results, with different "proper" initialized weights, there are some ways that "might help" to make neural network more stable, for example: use a Train-Test split, use a GridSearchCV for best parameters, and use k-fold cross validation...etc.
At the end, obviously the best scenario is to train the same network with different random initial weights many times then get the average results and variance, for more specific judgement on the overall performance. How many times? Well, if can do it hundreds of times, it will be better, yet that clearly is almost impractical (unless you have some Googlish hardware capability and capacity). As a result, we come to the same conclusion that you had in your question: There should be a tradeoff between time & space complexity and reliability on using a seed, taking into considerations some of the rules of thumb mentioned in previous points. Personally, I am okay to use the seed because I believe that, "It’s not who has the best algorithm that wins. It’s who has the most data". (Banko and Brill, 2001). Hence, using a seed with enough (define enough: it is subjective, but the more the better) data samples, shall not cause any concerns.
I want to use feature selection to find the terms in a document that are most useful for a binary classification task.
I've been looking around:
This mentions Mutual Information and the chi-squared test metric
http://nlp.stanford.edu/IR-book/html/htmledition/feature-selection-1.html
MATLAB has a number of functions as well:
http://www.mathworks.com/help/toolbox/stats/brj0qbu.html
Feature Selection in MATLAB
Of the above, relieff and rankfeatures look promising.
I do not know if my data follows a normal distribution. Any thoughts on which technique performs the best? Are there any newer methods you would suggest? The focus is to increase classification accuracy.
Thank you!
Since the answer is highly dependent on the nature of your data, I'd suggest playing with several options, possibly using a hold-out set for verification.
The easiest path would probably be to use Weka or RapidMiner for experimenting. Choosing from the plethora of options provided by them, you'll probably get acquainted with several other methods.
Having said that, I have found Mutual Information/Infogain to be useful on a large variety of problems.
I'm looking for ideas/experiences/references/keywords regarding an adaptive-parameter-control of search algorithm parameters (online-learning) in combinatorial-optimization.
A bit more detail:
I have a framework, which is responsible for optimizing a hard combinatorial-optimization-problem. This is done with the help of some "small heuristics" which are used in an iterative manner (large-neighborhood-search; ruin-and-recreate-approach). Every algorithm of these "small heuristics" is taking some external parameters, which are controlling the heuristic-logic in some extent (at the moment: just random values; some kind of noise; diversify the search).
Now i want to have a control-framework for choosing these parameters in a convergence-improving way, as general as possible, so that later additions of new heuristics are possible without changing the parameter-control.
There are at least two general decisions to make:
A: Choose the algorithm-pair (one destroy- and one rebuild-algorithm) which is used in the next iteration.
B: Choose the random parameters of the algorithms.
The only feedback is an evaluation-function of the new-found-solution. That leads me to the topic of reinforcement-learning. Is that the right direction?
Not really a learning-like-behavior, but the simplistic ideas at the moment are:
A: A roulette-wheel-selection according to some performance-value collected during the iterations (near past is more valued than older ones).
So if heuristic 1 did find all the new global best solutions -> high probability of choosing this one.
B: No idea yet. Maybe it's possible to use some non-uniform random values in the range (0,1) and i'm collecting some momentum of the changes.
So if heuristic 1 last time used alpha = 0.3 and found no new best solution, then used 0.6 and found a new best solution -> there is a momentum towards 1
-> next random value is likely to be bigger than 0.3. Possible problems: oscillation!
Things to remark:
- The parameters needed for good convergence of one specific algorithm can change dramatically -> maybe more diversify-operations needed at the beginning, more intensify-operations needed at the end.
- There is a possibility of good synergistic-effects in a specific pair of destroy-/rebuild-algorithm (sometimes called: coupled neighborhoods). How would one recognize something like that? Is that still in the reinforcement-learning-area?
- The different algorithms are controlled by a different number of parameters (some taking 1, some taking 3).
Any ideas, experiences, references (papers), keywords (ml-topics)?
If there are ideas regarding the decision of (b) in a offline-learning-manner. Don't hesitate to mention that.
Thanks for all your input.
Sascha
You have a set of parameter variables which you use to control your set of algorithms. Selection of your algorithms is just another variable.
One approach you might like to consider is to evolve your 'parameter space' using a genetic algorithm. In short, GA uses an analogue of the processes of natural selection to successively breed ever better solutions.
You will need to develop an encoding scheme to represent your parameter space as a string, and then create a large population of candidate solutions as your starting generation. The genetic algorithm itself takes the fittest solutions in your set and then applies various genetic operators to them (mutation, reproduction etc.) to breed a better set which then become the next generation.
The most difficult part of this process is developing an appropriate fitness function: something to quantitatively measure the quality of a given parameter space. Your search problem may be too complex to measure for each candidate in the population, so you will need a proxy model function which might be as hard to develop as the ideal solution itself.
Without understanding more of what you've written it's hard to see whether this approach is viable or not. GA is usually well suited to multi-variable optimisation problems like this, but it's not a silver bullet. For a reference start with Wikipedia.
This sounds like hyper heuristics which you're trying to do. Try looking for that keyword.
In Drools Planner (open source, java) I have support for tabu search and simulated annealing out the box.
I haven't implemented the ruin-and-recreate-approach (yet), but that should be easy, although I am not expecting better results. Challenge: Prove me wrong and fork it and add it and beat me in the examples.
Hyper heuristics are on my TODO list.
Are there any good online resources for how to create, maintain and think about writing test routines for numerical analysis code?
One of the limitations I can see for something like testing matrix multiplication is that the obvious tests (like having one matrix being the identity) may not fully test the functionality of the code.
Also, there is the fact that you are usually dealing with large data structures as well. Does anyone have some good ideas about ways to approach this, or have pointers to good places to look?
It sounds as if you need to think about testing in at least two different ways:
Some numerical methods allow for some meta-thinking. For example, invertible operations allow you to set up test cases to see if the result is within acceptable error bounds of the original. For example, matrix M-inverse times the matrix M * random vector V should result in V again, to within some acceptable measure of error.
Obviously, this example exercises matrix inverse, matrix multiplication and matrix-vector multiplication. I like chains like these because you can generate quite a lot of random test cases and get statistical coverage that would be a slog to have to write by hand. They don't exercise single operations in isolation, though.
Some numerical methods have a closed-form expression of their error. If you can set up a situation with a known solution, you can then compare the difference between the solution and the calculated result, looking for a difference that exceeds these known bounds.
Fundamentally, this question illustrates the problem that testing complex methods well requires quite a lot of domain knowledge. Specific references would require a little more specific information about what you're testing. I'd definitely recommend that you at least have Steve Yegge's recommended book list on hand.
If you're going to be doing matrix calculations, use LAPACK. This is very well-tested code. Very smart people have been working on it for decades. They've thought deeply about issues that the uninitiated would never think about.
In general, I'd recommend two kinds of testing: systematic and random. By systematic I mean exploring edge cases etc. It helps if you can read the source code. Often algorithms have branch points: calculate this way for numbers in this range, this other way for numbers in another range, etc. Test values close to the branch points on either side because that's where approximation error is often greatest.
Random input values are important too. If you rationally pick all the test cases, you may systematically avoid something that you don't realize is a problem. Sometimes you can make good use of random input values even if you don't have the exact values to test against. For example, if you have code to calculate a function and its inverse, you can generate 1000 random values and see whether applying the function and its inverse put you back close to where you started.
Check out a book by David Gries called The Science of Programming. It's about proving the correctness of programs. If you want to be sure that your programs are correct (to the point of proving their correctness), this book is a good place to start.
Probably not exactly what you're looking for, but it's the computer science answer to a software engineering question.