Smart cast does not cast String? to String after !value.isNullOrBlank() - kotlin

I want to add to the list objects only if they have all fields, and try this code:
data class Response(val id: String, val name: String)
val list = mutableListOf<Response>()
val id : String? = "test_id"
val name : String? = "test_name"
if (!id.isNullOrBlank() and !name.isNullOrBlank()) {
list.add(Response(id, name)) // Type mismatch. Required String, Found String?
}
But I got an error: Type mismatch. Required String, Found String?
What is the correct (and compact) way to do it?

As a recommendation: always try to use && instead of bitwise and to evaluate your conditions. Seldomly is there any reason to use a bitwise and (there are some use-cases, but in most cases you just want to have a short-circuiting evaluation of your conditions, even more so if there is some complex calculation/service calls within one of the functions).
From what I see and expect the smart cast should work, even more so because && already does work. I didn't find any appropriate or matching issue, so you may want to open a new ticket for this.
Note also that the smart cast should work due to the Kotlin contract defined in isNullOrBlank which basically checks whether the value underneath is null so it might be related to the evaluation of the contracts, and/or the inlining of the function and/or something of the former combined with the bitwise and.

An alternative approach I usually like to do, without involving smart casts:
val id : String = getId()?.takeIf { it.isNotBlank() } ?: return
val name : String = getName()?.takeIf { it.isNotBlank() } ?: return
list.add(Response(id, name))
Here you verify the value while you get it and abort if you cannot use it.

Related

Getters cannot be used to identify return type properly in Kotlin

I have a data class that has the following form:
data class ContentElementField(val type: String) {
val text: String? = null
get() = requireNotNull(field)
val style: String? = null
get() = requireNotNull(field)
val path: String? = null
get() = requireNotNull(field)
val caption: String? = null
get() = requireNotNull(field)
}
The problem arises when I want to perform the following operation:
when (it.type) {
"text" -> TextElement(Text(it.text), Style(it.style))
"image" -> ImageElement(Path(it.path), Caption(it.caption))
}
The compiler warns me about that You cannot send a nullable type to a function that does not accept nullable arguments.
Even if the field is signed to be nullable, its getter is signed to be not nullable, though.
The compiler should use getters to resolve whether to give this warning.
What would you offer to get around this problem?
It doesn't matter if your getter happens to crash if the current value is null - the type is still nullable, the getter's return type is still String?.
Why are you doing this anyway? Why not just make the fields non-null as normal and let a null assignment throw the exception instead? That way you won't have to fight the type system.
If what you have in mind is different and this was just meant to be a simple example, then you have a few options:
Use !! at the call site since you're guaranteeing it's not null
"text" -> TextElement(Text(it.text!!), Style(it.style))
Expose the private nullable property through a non-null one:
// I see people do this a lot in Activities and Fragments even though
// they should probably just be making the one property lateinit instead
private val _text: String? = whatever
val text: String get() = requireNotNull(_text)
Maybe look at Kotlin contracts which allow you to make guarantees to the compiler about values (no example because I've never used it)
It's not really clear what you actually want to do though, or why this is useful. Your example is even using vals and assigning null to them. Whatever your real use case is, there's probably a better way.
(Also in case you're not aware, properties that aren't constructor parameters aren't included in the basic data class behaviour, i.e. its equals/hashCode/toString implementations. Another reason just making the types non-null helps, you can stick them in the constructor instead of having to do this logic)

Different results on similar code with safe call operator in Kotlin

I'm new to Kotlin and these two below codes give different results.
fun main() {
var name: String? = "Rajat"
name = null
print(name?.toLowerCase())
}
Output: Compilation Error (illegal access operation)
fun main() {
var name: String? = null
print(name?.toLowerCase())
}
Output: null
When you do this assignment:
name = null
name is smart casted to Nothing?, which is problematic. Nothing is the subtype of every type, and so you become able to call any accessible extension functions of any type, according to the overload resolution rules here.
Compare:
fun main() {
var name: String? = "Denis"
name = null
print(name?.myExtension()) // works
val nothing: Nothing? = null
print(nothing?.myExtension()) // also works
}
fun Int.myExtension(): Nothing = TODO()
Note that allowing you to call any extension function on Nothing is perfectly safe - name is null anyway, so nothing is actually called.
Char.toLowerCase and String.toLowerCase happen to be two of the extension functions that are accessible, and you can call both on name, which is now a Nothing?. Therefore, the call is ambiguous.
Note that smart casts only happens in assignments, not in initialisers like var name: String? = null. Therefore, name is not smart casted to Nothing? in this case:
fun main() {
var name: String? = null
print(name?.toLowerCase()) // better to use lowercase(), toLowerCase is deprecated!
}
For the reason why, see my answer here.
The actual error on your first example is
Overload resolution ambiguity: public inline fun Char.toLowerCase(): Char defined in kotlin.text public inline fun String.toLowerCase(): String defined in kotlin.text
Looks like the Kotlin compiler is being too smart for its own good here. What's happening, is that on the second example, you are explicitly defining a variable of type String? and assigning it some value (null in this case, but that doesn't matter).
On the second example, you are defining a variable of some type, and then telling the compiler "hey, after this assignment, name is always null". So then it remembers the more-specific "name is null" instead of "name is String?".
The standard library has two methods called toLowerCase, one on Char and one on String. Both of them are valid matches now, and the compiler is telling you it doesn't know which one to pick. In the end that won't matter, because name is null, but the compiler apparently doesn't use that final thing to throw out the method call altogether.

is there any way I send a nullable Function<T,R> as parameter in Kotlin?

I am trying to use the public interface Function (as I learned it in Java) in Kotlin.
For this I created my method
fun foo(input: List<String>, modifier1: Function<List<String>>? = null){
}
as far I remember here I should be able to do modifier1.apply(input)
but seems like it is not possible (it is possible to do modifier1.apply{input} though)
Reading more about it I found this:
Kotlin: how to pass a function as parameter to another?
So I changed my method signature to this:
fun foo(input:String, modifier2: (List<String>) -> (List<String>){
}
Here I am able to do modifier2(input)
and I can call foo this way
service.foo(input, ::myModifierFunction)
where
fun myModifierFunction(input:List<String>):List<String>{
//do something
return input
}
So far this seems possible but it is not acceptable to have the function reference as nullable, is there any way I can do that? or use Function ?
You were using kotlin.Function instead of java.util.function.Function in your first example. Note that the latter takes 2 generic types: 1 for the incoming parameter and 1 for the resulting one.
The apply method you saw is the default Kotlin one: apply, not the one of Java's Function-interface.
If you really want to have the Java-function as nullable type the following should work:
fun foo(input: List<String>, modifier1: java.util.function.Function<List<String>, List<String>>? = null) {
modifier1?.apply(input) ?: TODO("what should be done if there wasn't passed any function?")
}
Kotlin variant for the same:
fun foo(input: List<String>, modifier1: ((List<String>) -> List<String>)? = null) {
modifier1?.invoke(input) ?: TODO("what should be done if there wasn't passed any function?")
}
Maybe also a default function, such as { it } instead of null might better suite your needs? (Java variant would be Function.identity()):
// java modifier1 : Function<List<String>, List<String>> = Function.identity()
// kotlin modifier1 : (List<String>) -> List<String> = { it }
You can make the reference nullable simply with ? — the only wrinkle is that the whole function type needs to be in parens first:
fun foo(input: String, modifier2: ((List<String>) -> List<String>)? = null) {
}
As required, modifier2 is optional; if specified, it may contain null, or it may contain a function taking and returning a list of strings.
As mentioned in another answer, kotlin.Function is not the same as java.util.function.Function — though in practice you shouldn't need to refer to either directly, as the -> notation is simpler.
If you want to pass in a function that takes List<String> as its parameter and returns nothing meaningful, the type for you is Function1<List<String>, Unit>. The method name for invoking a function is invoke(), which you could also do with just regular parentheses, if it wasn't nullable. All in all, your code could look something like this:
fun foo(input: List<String>, modifier1: Function1<List<String>, Unit>? = null) {
modifier1?.invoke(input)
}
The 1 in the typename of Function1 means that it's a one parameter function, there's also Function0, Function2, etc.
The Function type on its own is not something you can use to call that function, as it's an empty marker interface. All functions implement this regardless of how many parameters they have.

Proposed change of `equals` to `==` can't be applied to Char and String?

I have a function as below.
fun process(string: String?): Int {
if (string != null) {
return string.filter { it.equals("a") }.length
}
return 0
}
It shows that it.equals("a") could be improved, with the message
Call replaceable with binary operator
So I just use Alt-Enter to change it accordingly and get
fun process(string: String?): Int {
if (string != null) {
return string.filter { it == "a" }.length
}
return 0
}
Unfortunately now it error stating
Operator '==' cannot be applied to Char and String.
I assume this is a bug in the proposed optimization?
Just to be sure we're on the same page, it is a Char because the filter method that you use operates on the string as a sequence of characters.
Therefore, it.equals("a") is effectively comparing a Char with a String. This can never be true, because a string can never be equal to any character, even if it contains only one. So the code doesn't work in either case, unless you change your string "a" to the character 'a'.
Even if the operator == is compiled to the equivalent equals() method call, the compiler has additional checks in the operator form compared to explicit method calls. The error you get is because the == operator requires a type match, as opposed to its method counterpart equals(). (Since "a" is a string, you can't use the operator to compare it with the character it).
Why the difference? You may ask.
As far as I understood, the Kotlin team followed the Java convention for the method equals and left its contract permissive by allowing Any? as parameter. This is probably because of constraints of interoperability with Java.
However, they still saved us from this kind of mistakes with the additional type safety of the operator.
I have to admit, though, that the IDE should give you a warning for your incorrect equals call before asking you to replace the method call by an operator.

Difference between Any type and Generics in Kotlin

Suppose I have the following function definition.
fun<T> parse(a: Any): T = when (a) {
is String -> a
else -> false
}
I guessed it should be valid. However, the IntelliJ IDEA linter shows a type mismatch error
That being said, I would change the return type of my parse function to Any, right? So that, what is the difference between using Any type and Generics in Kotlin? In which cases should use each of those?
I did read the following question but not understood at all about star-projection in Kotlin due to the fact I am quite new.
Your return type it defined as T, but there is nothing assuring that T and a:Any are related. T may be more restrictive than Any, in which case you can't return a boolean or whatever you provided for a.
The following will work, by changing the return type from T to Any:
fun<T> parse(a: Any): Any = when (a) {
is String -> a
else -> false
}
Any alternate option, if you really want to return type T:
inline fun<reified T> parse(a: Any): T? = when (a) {
is T -> a
else -> null
}
Your example does not use T and thus it's nonsense to make it generic anyways.
Think about this: As a client you put something into a function, e.g. an XML-ByteArray which the function is supposed to parse into an Object. Calling the function you do not want to have it return Any (Casting sucks) but want the function return the type of the parsed object. THIS can be achieved with generics:
fun <T> parse(xml: ByteArray): T {
val ctx: JAXBContext = JAXBContext.newInstance()
val any = ctx.createUnmarshaller().unmarshal(ByteArrayInputStream(xml))
return any as T
}
val int = parse<Int>("123".toByteArray())
val string = parse<String>("123".toByteArray())
Look at the method calls: You tell with generics what type is expected to be returned. The code is not useful and only supposed to give you an idea of generics.
I guessed it should be valid
Why would it be? You return a String in one branch and a Boolean in the other. So the common type for the entire when expression is Any and that's what the compiler (and IDEA) says is "found". Your code also says it should be T (which is "required").
Your generic method should work for any T, e.g. for Int, but Any isn't a subtype of Int and so the code isn't valid.
So that, what is the difference between using Any type and Generics in Kotlin?
This is like asking "what is the difference between using numbers and files": they don't have much in common in the first place. You use generics to write code which can work with all types T (or with all types satisfying some constraint); you use Any when you want the specific type Any.