Can Theano / Pytorch / Tensorflow compute the following gradient automatically? - tensorflow

I am trying to run a recurrent neural network where the state update function for each neuron is the following
z = g*y
given that
g = (x<x_max & x>x_max-e) | (x>-x_max & x<-x_max+e)
Note that all the variables here are just scalars.
The variable x is defined in a way that it will always update continually so that g will always be a pulse as shown in the this picture. That is, g won't be 1 for a single update but it will be 1 for several consecutive updates.
Can any of these packages implement an automatic gradient computation given this transfer function?

The gradient can't be computed.
g as you have shown is a binary variable. So it's gradient can't be computed. Even the wave-form you have plotted has gradient 0 everywhere except at two points (where its infinite, function is discontinuous)

Related

How to find the input that maximize the Neural Network output in Tensorflow

I'm using Tensorflow (2.4) and Keras to build my neural network model. It takes two tensors as inputs and gives a scalar output. The network is already trained and, from now on, it has fixed weights. It is possible, given one of the two inputs, to find the value of the other input that maximise the output value?
Thank you in advance
In theory, yes.
Lets call your network model f. It takes two inputs x and y and outputs f(x, y). Then, assuming x and f are fixed, you can find the value y* that maximize f(x, y) as follows:
calculate the gradient of f with respect to y. Then, there are two possibilities.
there exists stationary points. Just set df/dy = 0 and solve for y. This gives the y* at which there is either a maximum or a minimum. Compute f(x, y*) to check weather y* gives a maximum or a minimum.
there are no stationary points (or there is no maximum). Here, you need to study where f decreases or increases if y varies. To do this, look for df/dy > 0 (increases) and df/dy < 0 (decreases). You will find that, asymptotically, the function increases. Simply take y*=a, where a is the closest value to such asymptote that you can take (given your data type precision).

Keras custom loss function with binary (round) with tensorflow backend

I'm currently trying to implement a custom loss function (precision) with a binary outcome but Tensorflow backend refuses to use round function which is necessary to be used in order to generate a '0' or '1'.
As far as I have investigated, this is because Tensorflow defines the gradient of the round as None and the loss function can't return None.
I have currently implemented this custom loss to create as close as is possible '0' or '1' in R Keras interface.
precision_loss<-function(y_true,y_pred){
y_pred_pos = K$clip(y_pred, 0, 1)
#Custom sigmoid to generate '0' '1'
y_pred_pos = K$maximum(0,K$minimum(1,(y_pred_pos+0.0625)/0.125))
y_pred_neg = 1 - y_pred_pos
y_pos = K$clip(y_true, 0, 1)
#Custom sigmoid to generate '0' '1'
y_pos = K$maximum(0,K$minimum(1,(y_pos+0.0625)/0.125))
y_neg = 1 - y_pos
#Generate confusion matrix counts
tp = K$sum(y_pos*y_pred_pos)
tn = K$sum(y_neg*y_pred_neg)
fp = K$sum(y_neg*y_pred_pos)
fn = K$sum(y_pos*y_pred_neg)
return(1-(tp/(tp+fp+K$epsilon())))
}
Notice the "sigmoid" : K$maximum(0,K$minimum(1,(y_pos+0.0625)/0.125))
What I wanted to implement is a workaround for this one:
precision_loss<-function(y_true, y_pred){
y_pred_pos = K$round(K$clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = K$round(K$clip(y_true, 0, 1))
y_neg = 1 - y_pos
#Generate confusion matrix counts
tp = K$sum(K$clip(y_pos * y_pred_pos,0,1))
tn = K$sum(K$clip(y_neg * y_pred_neg,0,1))
fp = K$sum(K$clip(y_neg * y_pred_pos,0,1))
fn = K$sum(K$clip(y_pos * y_pred_neg,0,1))
return(1-(tp/(tp+fp+K$epsilon())))
}
Some of you have an alternative implementation without using round to generate binary outcomes in the loss function?
PD: In custom metrics function the round is allowed
In order to build a binary loss function, it wouldn't be enough to just build the custom loss function itself. You would also have to pre-define the gradients.
Your high-dimensional loss function would be zero for some points and one for all others. For all non-continuous points in this space, it would be impossible to analytically compute a gradient (i.e. the concept of a gradient doesn't even exist for such points), so you would have to just define one. And for all the continuous points in this space (e.g. an open set in which all loss values are 1), the gradient would exist, but it would be zero, so you would also have to pre-define the gradient values, otherwise your weights wouldn't move at all.
That means either way you would have to define your own custom "gradient" computation function that replaces Keras' (i.e. TensorFlow's) automatic differentiation engine for that particular node in the graph (the loss function node).
You could certainly achieve this by modifying your local copy of Keras or TensorFlow, but nothing good can come from it.
Also, even if you managed to do this, consider this: If your loss function returns only 0 or 1, that means it can only distinguish between two states: The model's prediction is either 100% correct (0 loss) or it is not 100% correct (1 loss). The magnitude of the gradient would have to be the same for all non-100% cases. Is that a desirable property?
Your quasi-binary sigmoid solution has the same problem: The gradient will be almost zero almost everywhere, and in the few points where it won't be almost zero, it will be almost infinity. If you try to train a model with that loss function, it won't learn anything.
As you noticed a custom loss function need to be based on functions which have their gradients defined (in order to minimise the loss function), which is not necessary for a simple metric. Some functions like “round” and “sign” are difficult to use in loss function since their gradients are either null all the time or infinite which is not helpful for minimisation. That’s probably why their gradients are not defined, by default.
Then, you have two options:
Option 1: you use the round function but you need to add your custom gradient for round, to substitute it in backend.
Option 2: you define another loss function without using round
You chose option 2, which is the best option I think. But your “sigmoid” is very linear, so probably, not a good approximation of your “round” function. You could use an actual sigmoid which is slower due to the use of exponential but you could obtain a similar result with a modified softsign:
max_gradient=100
K$maximum(0,K$minimum(1,0.5*(1+(max_gradient*y_pos)/(1+ max_gradient*abs(y_pos)))))
The max_gradient coefficient can be used to make your edge more sharp, around 0.5. It defines the maximum gradient at 0.5.

how tensorflow handles complex gradient?

Let z is a complex variable, C(z) is its conjugation.
In complex analysis theory, the derivative of C(z) w.r.t z don't exist. But in tesnsorflow, we can calculate dC(z)/dz and the result is just 1.
Here is an example:
x = tf.placeholder('complex64',(2,2))
y = tf.reduce_sum(tf.conj(x))
z = tf.gradients(y,x)
sess = tf.Session()
X = np.random.rand(2,2)+1.j*np.random.rand(2,2)
X = X.astype('complex64')
Z = sess.run(z,{x:X})[0]
The input X is
[[0.17014372+0.71475762j 0.57455420+0.00144318j]
[0.57871044+0.61303568j 0.48074263+0.7623235j ]]
and the result Z is
[[1.-0.j 1.-0.j]
[1.-0.j 1.-0.j]]
I don't understand why the gradient is set to be 1?
And I want to know how tensorflow handles the complex gradients in general.
How?
The equation used by Tensorflow for the gradient is:
Where the '*' means conjugate.
When using the definition of the partial derivatives wrt z and z* it uses Wirtinger Calculus. Wirtinger calculus enables to calculate the derivative wrt a complex variable for non-holomorphic functions. The Wirtinger definition is:
Why this definition?
When using for example Complex-Valued Neural Networks (CVNN) the gradients will be used over non-holomorphic, real-valued scalar function of one or several complex variables, tensorflow definition of a gradient can then be written as:
This definition corresponds with the literature of CVNN like for example chapter 4 section 4.3 of this book or Amin et al. (between countless examples).
Bit late, but I came across this issue recently too.
The key point is that TensorFlow defines the "gradient" of a complex-valued function f(z) of a complex variable as "the gradient of the real map F: (x,y) -> Re(f(x+iy)), expressed as a complex number" (the gradient of that real map is a vector in R^2, so we can express it as a complex number in the obvious way).
Presumably the reason for that definition is that in TF one is usually concerned with gradients for the purpose of running gradient descent on a loss function, and in particular for identifying the direction of maximum increase/decrease of that loss function. Using the above definition of gradient means that a complex-valued function of complex variables can be used as a loss function in a standard gradient descent algorithm, and the result will be that the real part of the function gets minimised (which seems to me a somewhat reasonable interpretation of "optimise this complex-valued function").
Now, to your question, an equivalent way to write that definition of gradient is
gradient(f) := dF/dx + idF/dy = conj(df/dz + dconj(f)/dz)
(you can easily verify that using the definition of d/dz). That's how TensorFlow handles complex gradients. As for the case of f(z):=conj(z), we have df/dz=0 (as you mention) and dconj(f)/dz=1, giving gradient(f)=1.
I wrote up a longer explanation here, if you're interested: https://github.com/tensorflow/tensorflow/issues/3348#issuecomment-512101921

Tensorflow Linear Regression: Getting values for Adjusted R Square, Coefficients, P-value

There are few key parameters associated with Linear Regression e.g. Adjusted R Square, Coefficients, P-value, R square, Multiple R etc. While using google Tensorflow API to implement Linear Regression how are these parameter mapped? Is there any way we can get the value of these parameters after/during model execution
From my experience, if you want to have these values while your model runs then you have to hand code them using tensorflow functions. If you want them after the model has run you can use scipy or other implementations. Below are some examples of how you might go about coding R^2, MAPE, RMSE...
total_error = tf.reduce_sum(tf.square(tf.sub(y, tf.reduce_mean(y))))
unexplained_error = tf.reduce_sum(tf.square(tf.sub(y, prediction)))
R_squared = tf.sub(tf.div(total_error, unexplained_error),1.0)
R = tf.mul(tf.sign(R_squared),tf.sqrt(tf.abs(unexplained_error)))
MAPE = tf.reduce_mean(tf.abs(tf.div(tf.sub(y, prediction), y)))
RMSE = tf.sqrt(tf.reduce_mean(tf.square(tf.sub(y, prediction))))
I believe the formula for R2 should be the following. Note that it would go negative when the network is so bad that it does a worse job than the mere average as a predictor:
total_error = tf.reduce_sum(tf.square(tf.subtract(y, tf.reduce_mean(y))))
unexplained_error = tf.reduce_sum(tf.square(tf.subtract(y, pred)))
R_squared = tf.subtract(1.0, tf.divide(unexplained_error, total_error))
Adjusted_R_squared = 1 - [ (1-R_squared)*(n-1)/(n-k-1) ]
whereas n is the number of observations and k is the number of features.
You should not use a formula for R Squared. This exists in Tensorflow Addons. You will only need to extend it to Adjusted R Squared.
I would strongly recommend against using a recipe to calculate r-squared itself! The examples I've found do not produce consistent results, especially with just one target variable. This gave me enormous headaches!
The correct thing to do is to use tensorflow_addons.metrics.RQsquare(). Tensorflow Add Ons is on PyPi here and the documentation is a part of Tensorflow here. All you have to do is set y_shape to the shape of your output, often it is (1,) for a single output variable.
Then you can use what RSquare() returns in your own metric that handled the adjustments.

Tensorflow: opt.compute_gradients() returns values different from the weight difference of opt.apply_gradients()

Question: What is the most efficient way to get the delta of my weights in the most efficient way in a TensorFlow network?
Background: I've got the operators hooked up as follows (thanks to this SO question):
self.cost = `the rest of the network`
self.rmsprop = tf.train.RMSPropOptimizer(lr,rms_decay,0.0,rms_eps)
self.comp_grads = self.rmsprop.compute_gradients(self.cost)
self.grad_placeholder = [(tf.placeholder("float", shape=grad[1].get_shape(), name="grad_placeholder"), grad[1]) for grad in self.comp_grads]
self.apply_grads = self.rmsprop.apply_gradients(self.grad_placeholder)
Now, to feed in information, I run the following:
feed_dict = `training variables`
grad_vals = self.sess.run([grad[0] for grad in self.comp_grads], feed_dict=feed_dict)
feed_dict2 = `feed_dict plus gradient values added to self.grad_placeholder`
self.sess.run(self.apply_grads, feed_dict=feed_dict2)
The command of run(self.apply_grads) will update the network weights, but when I compute the differences in the starting and ending weights (run(self.w1)), those numbers are different than what is stored in grad_vals[0]. I figure this is because the RMSPropOptimizer does more to the raw gradients, but I'm not sure what, or where to find out what it does.
So back to the question: How do I get the delta on my weights in the most efficient way? Am I stuck running self.w1.eval(sess) multiple times to get the weights and calc the difference? Is there something that I'm missing with the tf.RMSPropOptimizer function.
Thanks!
RMSprop does not subtract the gradient from the parameters but use more complicated formula involving a combination of:
a momentum, if the corresponding parameter is not 0
a gradient step, rescaled non uniformly (on each coordinate) by the square root of the squared average of the gradient.
For more information you can refer to these slides or this recent paper.
The delta is first computed in memory by tensorflow in the slot variable 'momentum' and then the variable is updated (see the C++ operator).
Thus, you should be able to access it and construct a delta node with delta_w1 = self.rmsprop.get_slot(self.w1, 'momentum'). (I have not tried it yet.)
You can add the weights to the list of things to fetch each run call. Then you can compute the deltas outside of TensorFlow since you will have the iterates. This should be reasonably efficient, although it might incur an extra elementwise difference, but to avoid that you might have to hack around in the guts of the optimizer and find where it puts the update before it applies it and fetch that each step. Fetching the weights each call shouldn't do wasteful extra evaluations of part of the graph at least.
RMSProp does complicated scaling of the learning rate for each weight. Basically it divides the learning rate for a weight by a running average of the magnitudes of recent gradients of that weight.