Equality between paths - equality

Using the cubical-demo library, I thought the following would be trivial to prove:
{-# OPTIONS --cubical #-}
open import Cubical.PathPrelude
foo : ∀ {ℓ} {A : Set ℓ} {x y : A} (p : x ≡ y) → trans refl p ≡ p
foo p = ?
But alas, it doesn't hold definitionally: trying to use refl fails with
primComp (λ _ → ;A) (~ i ∨ i) (λ { i₁ (i = i0) → ;x ; i₁ (i = i1) → p i₁ }) (refl i)
!= p i
of type ;A
and I don't know where to start.

No, sadly we lose some definitional equalities when using Path, because we don't know how to keep the system confluent if we were to add those reductions.
The eliminator of the Id type instead has the usual reduction rules.
https://github.com/Saizan/cubical-demo/blob/master/src/Cubical/Id.agda
In the case of the lemma you want to prove about trans you can find a proof at
https://github.com/Saizan/cubical-demo/blob/master/src/Cubical/Lemmas.agda
By the way, cubical-demo grew up organically, and we are starting fresh with hopefully a cleaner setup (altough with different primitives) at
https://github.com/agda/cubical
cubical has a better Id module for example:
https://github.com/agda/cubical/blob/master/Cubical/Core/Id.agda

Based on Saizan's answer I looked up the proof in cubical-demo and ported it to the new cubical library. I can see how it works out (as in, I can see that the value of the given path is x on all three designated edges) but I don't see yet how I would come up with a similar proof for a similar situation:
{-# OPTIONS --cubical #-}
module _ where
open import Cubical.Core.Prelude
refl-compPath : ∀ {ℓ} {A : Set ℓ} {x y : A} (p : x ≡ y) → compPath refl p ≡ p
refl-compPath {x = x} p i j = hcomp {φ = ~ j ∨ j ∨ i}
(λ { k (j = i0) → x
; k (j = i1) → p k
; k (i = i1) → p (k ∧ j)
})
x

Related

Applying known proofs in Idris 1 interactive elaborator

I am trying to get some familiarity with theorem proving in Idris1 by exercise and am running into trouble.
Suppose I have the following definition for naturals and the following theorems that I want to prove:
data Natural = Z | S Natural
plus : Natural -> Natural -> Natural
plus x Z = x
plus x (S y) = S (plus x y)
succBoth : {a : Natural} -> {b : Natural} -> (a = b) -> (S a = S b)
succBoth = ?succBothProof
plusZero : (y : Natural) -> plus Z y = y
plusZero = ?plusZeroProof
plusSwitch : (x : Natural) -> (y : Natural) -> plus (S x) y = S (plus x y)
plusSwitch = ?plusSwitchProof
plusComm : (x : Natural) -> (y : Natural) -> plus x y = plus y x
plusComm = ?plusCommProof
I already have written proofs for the first three. Now, when I want to prove the last theorem, I run into necessity of applying an earlier proof.
Idris> :l Peano.idr
Holes: Peano.plusCommProof
*Peano> :elab plusCommProof
-Peano.plusCommProof> intro `{{x}}
...
-Peano.plusCommProof> intro `{{y}}
...
-Peano.plusCommProof> induction (Var `{{y}})
...
-Peano.plusCommProof> compute
...
-Peano.plusCommProof> attack
---------- Other goals: ----------
{Z_103},{S_104}
---------- Assumptions: ----------
x : Natural
y : Natural
---------- Goal: ----------
{hole_7} : x = plus Z x
It would be natural to apply plusZero at this stage, but I run into issues trying to do that. I try to apply it via rewriteWith, keeping in mind that plusZero takes a Natural type argument. I try to supply it with the x variable, thinking that it will be able to infer its Natural type from assumptions, but no luck:
-Peano.plusCommProof> rewriteWith `(plusZero (Var `{{x}}))
(input):1:15-35:When checking argument y to function Peano.plusZero:
Type mismatch between
Raw (Type of Var _)
and
Natural (Expected type)
How does one "cast" the Raw variable into its type in context?
I couldn't get the Idris 1 version to work but I did install Idris 2 and wrote the proofs in its style instead.
module Peano
data Natural = Zero | Succ Natural
plus : Natural -> Natural -> Natural
plus x Zero = x
plus x (Succ y) = Succ (plus x y)
succBoth : {a : Natural} -> {b : Natural} -> (a = b) -> (Succ a = Succ b)
succBoth rfl = cong (\ a => Succ a) rfl
plusZero : (y : Natural) -> plus Zero y = y
plusZero Zero = Refl
plusZero (Succ y)
= let assumption = plusZero y in
rewrite assumption in Refl
plusSwitch : (x : Natural) -> (y : Natural) ->
plus (Succ x) y = Succ (plus x y)
plusSwitch x Zero = Refl
plusSwitch x (Succ y)
= let assumption = plusSwitch x y in
rewrite assumption in Refl
plusComm : (x : Natural) -> (y : Natural) -> plus x y = plus y x
plusComm x Zero = rewrite plusZero x in Refl
plusComm x (Succ y)
= let assumption = plusComm x y in
rewrite plusSwitch y x in
rewrite assumption in Refl
Admittedly much more compact but I prefer the Idris 1 :elab style for readability

Problems with equational proofs and interface resolution in Idris

I'm trying to model Agda style equational reasoning proofs for Setoids (types with an equivalence relation). My setup is as follows:
infix 1 :=:
interface Equality a where
(:=:) : a -> a -> Type
interface Equality a => VerifiedEquality a where
eqRefl : {x : a} -> x :=: x
eqSym : {x, y : a} -> x :=: y -> y :=: x
eqTran : {x, y, z : a} -> x :=: y -> y :=: z -> x :=: z
Using such interfaces I could model some equational reasoning combinators like
Syntax.PreorderReasoning from Idris library.
syntax [expr] "QED" = qed expr
syntax [from] "={" [prf] "}=" [to] = step from prf to
namespace EqReasoning
using (a : Type, x : a, y : a, z : a)
qed : VerifiedEquality a => (x : a) -> x :=: x
qed x = eqRefl {x = x}
step : VerifiedEquality a => (x : a) -> x :=: y -> (y :=: z) -> x :=: z
step x prf prf1 = eqTran {x = x} prf prf1
The main difference from Idris library is just the replacement of propositional equality and their related functions to use the ones from VerifiedEquality interface.
So far, so good. But when I try to use such combinators, I run in problems that, I believe, are related to interface resolution. Since the code is part of a matrix library that I'm working on, I posted the relevant part of it in the following gist.
The error occurs in the following proof
zeroMatAddRight : ( VerifiedSemiring s
, VerifiedEquality s ) =>
{r, c : Shape} ->
(m : M s r c) ->
(m :+: (zeroMat r c)) :=: m
zeroMatAddRight {r = r}{c = c} m
= m :+: (zeroMat r c)
={ addMatComm {r = r}{c = c} m (zeroMat r c) }=
(zeroMat r c) :+: m
={ zeroMatAddLeft {r = r}{c = c} m }=
m
QED
that returns the following error message:
When checking right hand side of zeroMatAddRight with expected type
m :+: (zeroMat r c) :=: m
Can't find implementation for Semiring a
Possible cause:
./Data/Matrix/Operations/Addition.idr:112:11-118:1:When checking an application of function Algebra.Equality.EqReasoning.step:
Type mismatch between
m :=: m (Type of qed m)
and
y :=: z (Expected type)
At least to me, it appears that this error is related with interface resolution that isn't interacting well with syntax extensions.
My experience is that such strange errors can be solved by passing implicit parameters explicitly. The problem is that such solution will kill the "readability" of equational reasoning combinator proofs.
Is there a way to solve this? The relevant part for reproducing this error is available in previously linked gist.

Distributivity of `subst`

Suppose I have a transitive relation ~with two endomaps f and g.
Assuming f and g agree everywhere and f a ~ f b ~ f c
then there are two ways to show g a ~ g c:
transform each f into a g by the given equality then apply
transitivity,
or apply transitivity then transform along the equality.
Are the resulting proofs identical? Apparently so,
open import Relation.Binary.PropositionalEquality
postulate A : Set
postulate _~_ : A → A → Set
postulate _⟨~~⟩_ : ∀{a b c} → a ~ b → b ~ c → a ~ c
postulate f g : A → A
subst-dist : ∀{a b c}{ef : f a ~ f b}{psf : f b ~ f c} → (eq : ∀ {z} → f z ≡ g z)
→
subst₂ _~_ eq eq ef ⟨~~⟩ subst₂ _~_ eq eq psf
≡ subst₂ _~_ eq eq (ef ⟨~~⟩ psf)
subst-dist {a} {b} {c} {ef} {psf} eq rewrite eq {a} | eq {b} | eq {c} = refl
I just recently learned about the rewrite keyword and thought it might help here; apparently it does. However, I honestly do not understand what is going on here. I've used rewrite other times, with comprehension. However, all these substs are confusing me.
I'd like to know
if is there a simplier way to obtain subst-dist? Maybe something similar in the libraries?
what is going on with this particular usage of rewrite
an alternate proof of subst-dist without using rewrite (most important)
is there another way to obtain g a ~ g c without using subst?
what are some of the downsides of using heterogeneous equality, it doesn't seem like most people are fond of it. (also important)
Any help is appreciated.
rewrite is just a sugared with, which is just sugared "top-level" pattern matching. See in Agda’s documentation.
what are some of the downsides of using heterogeneous equality, it
doesn't seem like most people are fond of it. (also important)
This is OK
types-equal : ∀ {α} {A B : Set α} {x : A} {y : B} -> x ≅ y -> A ≡ B
types-equal refl = refl
this is OK as well
A-is-Bool : {A : Set} {x : A} -> x ≅ true -> A ≡ Bool
A-is-Bool refl = refl
This is an error
fail : ∀ {n m} {i : Fin n} {j : Fin m} -> i ≅ j -> n ≡ m
fail refl = {!!}
-- n != m of type ℕ
-- when checking that the pattern refl has type i ≅ j
because Fin n ≡ Fin m doesn't immediately imply n ≡ m (you can make it so by enabling --injective-type-constructors, but that makes Agda anti-classical) (Fin n ≡ Fin m -> n ≡ m is provable though).
Originally Agda permitted to pattern match on x ≅ y when x and y have non-unifiable types, but that allows to write weird things like (quoting from this thread)
P : Set -> Set
P S = Σ S (\s → s ≅ true)
pbool : P Bool
pbool = true , refl
¬pfin : ¬ P (Fin 2)
¬pfin ( zero , () )
¬pfin ( suc zero , () )
¬pfin ( suc (suc ()) , () )
tada : ¬ (Bool ≡ Fin 2)
tada eq = ⊥-elim ( ¬pfin (subst (\ S → P S) eq pbool ) )
Saizan or maybe it's just ignoring the types and comparing the constructor names?
pigworker Saizan: that's exactly what I think is happening
Andread Abel:
If I slighly modify the code, I can prove Bool unequal Bool2, where true2, false2 : Bool2 (see file ..22.agda)
However, if I rename the constructors to true, false : Bool2, then suddenly I cannot prove that Bool is unequal to Bool2 anymore (see
other file). So, at the moment Agda2 compares apples and oranges in
certain situations. ;-)
So in order to pattern match on i ≅ j, where i : Fin n, j : Fin m, you first need to unify n with m
OK : ∀ {n m} {i : Fin n} {j : Fin m} -> n ≡ m -> i ≅ j -> ...
OK refl refl = ...
That's the main drawback of heteregeneous equality: you need to provide proofs of equality of indices everywhere. Usual cong and subst are non-indexed, so you also have to provide indexed versions of them (or use even more annoying cong₂ and subst₂).
There is no such problem with "heteroindexed" (I don't know if it has a proper name) equality
data [_]_≅_ {ι α} {I : Set ι} {i} (A : I -> Set α) (x : A i) : ∀ {j} -> A j -> Set where
refl : [ A ] x ≅ x
e.g.
OK : ∀ {n m} {i : Fin n} {j : Fin m} -> [ Fin ] i ≅ j -> n ≡ m
OK refl = refl
More generally, whenever you have x : A i, y : A j, p : [ A ] x ≅ y, you can pattern match on p and j will be unified with i, so you don't need to carry an additional proof of n ≡ m.
Heterogeneous equality, as it presented in Agda, is also inconsistent with the univalence axiom.
EDIT
Pattern matching on x : A, y : B, x ≅ y is equal to pattern matching on A ≡ B and then changing every y in a context to x. So when you write
fail : ∀ {n m} {i : Fin n} {j : Fin m} -> i ≅ j -> n ≡ m
fail refl = {!!}
it's the same as
fail' : ∀ {n m} {i : Fin n} {j : Fin m} -> Fin n ≡ Fin m -> i ≅ j -> n ≡ m
fail' refl refl = {!!}
but you can't pattern match on Fin n ≡ Fin m
fail-coerce : ∀ {n m} -> Fin n ≡ Fin m -> Fin n -> Fin m
fail-coerce refl = {!!}
-- n != m of type ℕ
-- when checking that the pattern refl has type Fin n ≡ Fin m
like you cannot pattern match on
fail'' : ∀ {n m} -> Nat.pred n ≡ Nat.pred m -> n ≡ m
fail'' refl = {!!}
-- n != m of type ℕ
-- when checking that the pattern refl has type Nat.pred n ≡ Nat.pred m
In general
f-inj : ∀ {n m} -> f n ≡ f m -> ...
f-inj refl = ...
works only if f is obviously injective. I.e. if f is a series of constructors (e.g. suc (suc n) ≡ suc (suc m)) or computes to it (e.g. 2 + n ≡ 2 + m). Type constructors (which Fin is) are not injective because that would make Agda anti-classical, so you cannot pattern on Fin n ≡ Fin m unless you enable --injective-type-constructors.
Indices unify for
data [_]_≅_ {ι α} {I : Set ι} {i} (A : I -> Set α) (x : A i) : ∀ {j} -> A j -> Set where
refl : [ A ] x ≅ x
because you don't try to unify A i with A j, but instead explicitly carry indices in the type of [_]_≅_, which make them available for unification. When indices are unified, both types become the same A i and it's possible to proceed like with propositional equality.
EDIT
One another problem with heterogeneous equality is that it's not fully heterogeneous: in x : A, y : B, x ≅ y A and B must be in the same universe. The treatment of universe levels in data definitions has been changed recently and now we can define fully heterogeneous equality:
data _≅_ {α} {A : Set α} (x : A) : ∀ {β} {B : Set β} -> B -> Set where
refl : x ≅ x
But this doesn't work
levels-equal : ∀ {α β} -> Set α ≅ Set β -> α ≅ β
levels-equal refl = refl
-- Refuse to solve heterogeneous constraint Set α : Set (suc α) =?=
-- Set β : Set (suc β)
because Agda doesn't think suc is injective
suc-inj : {α β : Level} -> suc α ≅ suc β -> α ≅ β
suc-inj refl = refl
-- α != β of type Level
-- when checking that the pattern refl has type suc α ≅ suc β
If we postulate it, then we can prove levels-equal:
hcong : ∀ {α β δ} {A : Set α} {B : Set β} {D : Set δ} {x : A} {y : B}
-> (f : ∀ {γ} {C : Set γ} -> C -> D) -> x ≅ y -> f x ≅ f y
hcong f refl = refl
levelOf : ∀ {α} {A : Set α} -> A -> Level
levelOf {α} _ = α
postulate
suc-inj : {α β : Level} -> suc α ≅ suc β -> α ≅ β
levels-equal : ∀ {α β} -> Set α ≅ Set β -> α ≅ β
levels-equal p = suc-inj (suc-inj (hcong levelOf p))

Equality of records in Agda

It seems that to prove that two items of a record type are equivalent, I need to write a helper that takes component wise proofs and applies them.
An example:
postulate P : ℕ → Set
record Silly : Set (ℓsuc ℓ₀) where
constructor _#_#_
field
n : ℕ
pn : P n
f : Set → ℕ
open Silly
SillyEq : ∀ s t → n s ≡ n t → pn s ≅ pn t → f s ≡ f t → s ≡ t
SillyEq (n # pn # f) (.n # .pn # .f) ≡-refl ≅-refl ≡-refl = ≡-refl
I feel like SillyEq should somehow be available to me, that I do not need to write it myself --or am I mistaken.
Also, I could not prove SillyEq without declaring a constructor and then pattern matching on it.
Thanks for your assistance!
Having
SillyEq' : ∀ {n₁ n₂ pn₁ pn₂ f₁ f₂}
→ n₁ ≡ n₂ → pn₁ ≅ pn₂ → f₁ ≡ f₂ → (n₁ # pn₁ # f₁) ≡ (n₂ # pn₂ # f₂)
you can prove SillyEq as
SillyEq : ∀ s t → n s ≡ n t → pn s ≅ pn t → f s ≡ f t → s ≡ t
SillyEq _ _ = SillyEq'
due to the η-rule for Silly. So if you have an arity-generic version of cong, then you can prove SillyEq as (note the heterogeneous equality everywhere)
SillyEq : ∀ s t → n s ≅ n t → pn s ≅ pn t → f s ≅ f t → s ≅ t
SillyEq _ _ = gcong 3 _#_#_
I don't know whether gcong can be easily expressed via reflection, but I guess it can be written using the usual arity-generic programming stuff (like here), but the solution won't be short.
Here is an ad hoc proof:
cong₃ : ∀ {α β γ δ} {A : Set α} {B : A -> Set β} {C : ∀ {x} -> B x -> Set γ}
{D : ∀ {x} {y : B x} -> C y -> Set δ} {x y v w s t}
-> (f : ∀ x -> (y : B x) -> (z : C y) -> D z)
-> x ≅ y -> v ≅ w -> s ≅ t -> f x v s ≅ f y w t
cong₃ f refl refl refl = refl
SillyEq : ∀ s t → n s ≅ n t → pn s ≅ pn t → f s ≅ f t → s ≅ t
SillyEq _ _ = cong₃ _#_#_
However, a mix of propositional and heterogeneous equalities like in your case complicates everything.

refl in agda : explaining congruence property

With the following definition of equality, we have refl as constructor
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
and we can prove that function are congruent on equality
cong : ∀ { a b} { A : Set a } { B : Set b }
(f : A → B ) {m n} → m ≡ n → f m ≡ f n
cong f refl = refl
I am not sure I can parse what is going on exactly here.
I think we are pattern matching refl on hidden parameters : if we replace the first occurence by refl by another identifier, we get a type error.
after pattern matching, I imagine that m and n are the same by the definition of refl. then magic occurs (a definition of functionality of a relation is applied ? or is it build in ?)
Is there an intuitive description on what is going on ?
Yes, the arguments in curly braces {} are implicit and they only need to be supplied or matched if agda cannot figure them out. It is necessary to specify them, since dependent types needs to refer to the values they depend on, but dragging them around all the time would make the code rather clunky.
The expression cong f refl = refl matches the explicit arguments (A → B) and (m ≡ n). If you wanted to match the implicit arguments, you'd need to put the matching expression in {}, but here there is no need for that. Then on the right hand side it is indeed the construction of (f m ≡ f n) using refl, and it works "by magic". Agda has a built-in axiom that proves this to be true. That axiom is similar (but stronger than) J-axiom - the induction axiom: if something C : (x y : A) → (x ≡ y) → Set is true for C x x refl, then it is also true for any x y : A and p : x ≡ y.
J : forall {A : Set} {C : (x y : A) → (x ≡ y) → Set} →
(c : ∀ x → C x x refl) →
(x y : A) → (p : x ≡ y) → C x y p
-- this really is an axiom, but in Agda there is a stronger built-in,
-- which can be used to prove this
J c x .x refl = c x -- this _looks_ to only mean x ≡ x
-- but Agda's built-in extends this proof to all cases
-- for which x ≡ y can be constructed - that's the point
-- of having induction
cong : ∀ { a b} { A : Set a } { B : Set b }
(f : A → B ) {m n} → m ≡ n → f m ≡ f n
cong f {x} {y} p = J {C = \x y p → f x ≡ f y} -- the type of equality
-- of function results
(\_ → refl) -- f x ≡ f x is true indeed
x y p
(In this last line we: match explicit arguments f and p, and also the implicit arguments m=x and n=y. Then we pass to J one implicit argument, but it is not the first positional implicit, so we tell agda that it is C in the definition - without doing that, Agda won't see what type is meant by refl in \_ → refl)