What is mouseResponse threshold and why should we set a specific threshold? - physics

I am beginner.I just started coding in codeacademy.In a certain level,the gave me a task which is relatate with threshold.So,my question is what is mouseResponse threshold and why should we set a specific threshold?
The actual question is give below:
1.
Three variables let you experiment with the animation physics: mouseResponseThreshold, friction, and rotationForce.
mouseResponseThreshold affects how close the mouse pointer needs to be to affect the dots that make up the letters. The larger the number, the more powerful the effect of the mouse interaction. Experiment with changing the mouseResponseThreshold to different numbers and running your code!
And the hint is "Try starting out by setting the threshold to 150."

What is mouseResponse threshold
This is distance from the mouse position to your target's position (in this case, the target is the "...dots that make up your letters").
Why should I set it
You need to set it so that your code knows at what distance it needs to do a certain operation.

Related

What's the fastest way to find if a point is in one of many rectangles?

So basically im doing this for my minecraft spigot plugin (java). I know there are already some land claim plugins but i would like to make my own.
For this claim plugin i'd like to know how to get if a point (minecraft block) is inside a region (rectangle). i know how to check if a point is inside a rectangle, the main problem is how to check as quickly as possible when there are like lets say 10.000 rectangles.
What would be the most efficient way to check 10.000 or even 100.000 without having to manually loop through all of them and check every single rectangle?
Is there a way to add a logical test when the rectangles get generated in a way that checks if they hold that point? In that case you could set a boolean to true if they contain that point when generated, and then when checking for that minecraft block the region (rectangle) replies with true or false.
This way you run the loops or checks when generating the rectangles, but when running the game the replies should happen very fast, just check if true or false for bool ContainsPoint.
If your rectangles are uniformly placed neighbors of each other in a big rectangle, then finding which rectangle contains point is easy:
width = (maxX-minX)/num_rectangles_x;
height = same but for y
idx = floor( (x - minX)/width );
idy = floor( (y - minY)/height );
id_square = idx + idy*num_rectangles_x;
If your rectangles are randomly placed, then you should use a spatial acceleration structure like octree. Then check if point is in root, then check if point is in one of its nodes, repeat until you find a leaf that includes the point. 10000 tests per 10milliseconds should be reachable on cpu. 1 million tests per 10ms should be ok for a gpu. But you may need to implement a sparse version of the octree and a space filling curve order for leaf nodes to have better caching, to reach those performance levels.

How to access net displacements in pyiron

Using pyiron, I want to calculate the mean square displacement of the ions in my system. How do I see the total displacement (i.e. not folded back by periodic boundary conditions) without dumping very frequently and checking when an atom passes over the boundary and gets wrapped?
Try to compare job['output/generic/unwrapped_positions'][-1] and job.structure.positions+job.output.total_displacements[-1]. If they deliver the same values, it's definitely fine both ways. If not, you can post the relevant lines in your notebook here.
I'd like to add a few comments to Jan's answer:
While job['output/generic/unwrapped_positions'] returns the unwrapped positions parsed from the output files, job.output.total_displacements returns the displacement of atoms calculated from each pair of consecutive snapshots. So if an atom moves more than half the box length in any direction, job.output.total_displacements will give wrong coordinates. Therefore, job['output/generic/unwrapped_positions'] is generally more trustworthy, but it is not available in all the codes (since some codes simply do not provide an output for unwrapped positions).
Moreover, if an interactive job is used, it is possible that job.structure.positions does not return the initial positions, i.e. job.structure.positions+job.output.total_displacements won't be initial positions + displacements.
So, in short, my answer to your question would be rather "Use job['output/generic/unwrapped_positions'] and if it's not available, use job.structure.positions+job.output.total_displacements but be aware of potential problems you might be running into."

Making cylindrical space in Repast Simphony?

I am trying to model the interior of an epithelial space and am stuck on movement around the interior edges of a cylindrical space. Basically, I'm trying to implement StickyBorders and keep agents on those borders in a cylindrical space that I am creating.
Is there a way to use cylindrical coordinates in Repast Simphony? I found this example (https://www.researchgate.net/publication/259695792_An_Agent-Based_Model_of_Vascular_Disease_Remodeling_in_Pulmonary_Arterial_Hypertension) where they seem to have done something similar, but the paper doesn't explain methods in much depth, and I don't believe this is an example in the repast simphony models.
Currently, I have a class of epithelial cells that are set up to form a cylinder and other agents start just inside that cylinder. To move, they are choosing their most desired spot (similar to the Zombie code) then pointing to a new location in the direction of that desired location within one grid square of that original location. They check that new point before moving to it and make sure that there are at least two other epithelial cells in the immediate moore neighborhood, to ensure they stay against the wall.
GridPoint intendedpt = new GridPoint((int)Math.rint(alongX),(int)Math.rint(alongY),(int)Math.rint(alongZ));
GridCellNgh<EpithelialCell> nearEpithelium = new GridCellNgh<EpithelialCell>(mac_grid, intendedpt, EpithelialCell.class, 1,1,1);
List<GridCell<EpithelialCell>> EpiCells = nearEpithelium.getNeighborhood(false);
int nearbyEpiCellsCount=0;
for (GridCell<EpithelialCell> cell: EpiCells) {
nearbyEpiCellsCount++;
}
if (nearbyEpiCellsCount<2) {
System.out.println(this + " leaving epithelial wall /r");
RunEnvironment.getInstance().pauseRun();
//TODO: where to go if false
}
I am wondering if there is a way to either set the boundaries of the space to be a cylinder or to check which side of the agent is against the wall and restrict its movement in that direction.
The sticky border code (StickyBorders.java) essentially just checks if the point that the agent moves to is beyond any of the space's dimensions, and if so the point is clamped to that dimension. So, for example, if the space is 3x4 and an agent's movement would take it to 4,2, then that point becomes 3,2 and the agent is placed there. Can you do something like that in this case? If not, can you edit your question to explain why not and maybe that will help us understand better.
The approach we took in that model was to use a 3D grid space with custom borders and query methods. The space itself was still Cartesian - we just visualized it as a cylinder using custom display code. Using the Cartesian grid was an reasonable approximation for this application since the cell dimensions were significantly smaller that the vessel radius, so curvature effects were neglected. The boundary conditions on the vessel space were wrap around in the angular dimension, so that cells could move continuously around the circumference of the vessel, and the axial boundary conditions were also wrapped, as we assumed a long enough vessel length that this would be reasonable. The wall thickness dimension had hard boundaries at the basement membrane (y=0) and at the fluid interface (y=wall thickness).
Depending on which type of space you are using, you will need to implement a PointTranslator or GridPointTranslator that performs the border functions. If you want specific examples of the code I suggest you reach out to the author's directly.

Projectile hit coordinates at the apex of its path

I have a projectile that I would like to pass through specific coordinates at the apex of its path. I have been using a superb equation that giogadi outlined here, by plugging in the velocity values it produces into chipmunk's cpBodyApplyImpulse function.
The equation has one drawback that I haven't been able to figure out. It only works when the coordinates that I want to hit have a y value higher than the cannon (where my projectile starts). This means that I can't shoot at a downward angle.
Can anybody help me find a suitable equation that works no matter where the target is in relation to the cannon?
As pointed out above, there isn't any way to make the apex be lower than the height of the cannon (without making gravity work backwards). However, it is possible to make the projectile pass through a point below the cannon; the equations are all here. The equation you need to solve is:
angle = arctan((v^2 [+-]sqrt(v^4 - g*(x^2+2*y*v^2)))/g*x)
where you choose a velocity and plug in the x and y positions of the target - assuming the cannon is at (0,0). The [+-] thing means that you can choose either root. If the argument to the square root function is negative (an imaginary root) you need a larger velocity. So, if you are "in range" you have two possible angles for any particular velocity (other than in the maximum range 45 degree case where the two roots should give the same answer).
I suspect one trajectory will tend to 'look' much more sensible than the other, but that's something to play around with once you have something working. You may want to stick with the apex grazing code for the cases where the target is above the cannon.

How to create an "intercept missile" for a game?

I have a game I am working on that has homing missiles in it. At the moment they just turn towards their target, which produces a rather dumb looking result, with all the missiles following the target around.
I want to create a more deadly flavour of missile that will aim at the where the target "will be" by the time it gets there and I am getting a bit stuck and confused about how to do it.
I am guessing I will need to work out where my target will be at some point in the future (a guess anyway), but I can't get my head around how far ahead to look. It needs to be based on how far the missile is away from the target, but the target it also moving.
My missiles have a constant thrust, combined with a weak ability to turn. The hope is they will be fast and exciting, but steer like a cow (ie, badly, for the non HitchHiker fans out there).
Anyway, seemed like a kind of fun problem for Stack Overflow to help me solve, so any ideas, or suggestions on better or "more fun" missiles would all be gratefully received.
Next up will be AI for dodging them ...
What you are suggesting is called "Command Guidance" but there is an easier, and better way.
The way that real missiles generally do it (Not all are alike) is using a system called Proportional Navigation. This means the missile "turns" in the same direction as the line-of-sight (LOS) between the missile and the target is turning, at a turn rate "proportional" to the LOS rate... This will do what you are asking for as when the LOS rate is zero, you are on collision course.
You can calculate the LOS rate by just comparing the slopes of the line between misile and target from one second to the next. If that slope is not changing, you are on collision course. if it is changing, calculate the change and turn the missile by a proportionate angular rate... you can use any metrics that represent missile and target position.
For example, if you use a proportionality constant of 2, and the LOS is moving to the right at 2 deg/sec, turn the missile to the right at 4 deg/sec. LOS to the left at 6 deg/sec, missile to the left at 12 deg/sec...
In 3-d problem is identical except the "Change in LOS Rate", (and resultant missile turn rate) is itself a vector, i.e., it has not only a magnitude, but a direction (Do I turn the missile left, right or up or down or 30 deg above horizontal to the right, etc??... Imagine, as a missile pilot, where you would "set the wings" to apply the lift...
Radar guided missiles, which "know" the rate of closure. adjust the proportionality constant based on closure (the higher the closure the faster the missile attempts to turn), so that the missile will turn more aggressively in high closure scenarios, (when the time of flight is lower), and less aggressively in low closure (tail chases) when it needs to conserve energy.
Other missiles (like Sidewinders), which do not know the closure, use a constant pre-determined proportionality value). FWIW, Vietnam era AIM-9 sidewinders used a proportionality constant of 4.
I've used this CodeProject article before - it has some really nice animations to explain the math.
"The Mathematics of Targeting and Simulating a Missile: From Calculus to the Quartic Formula":
http://www.codeproject.com/KB/recipes/Missile_Guidance_System.aspx
(also, hidden in the comments at the bottom of that article is a reference to some C++ code that accomplishes the same task from the Unreal wiki)
Take a look at OpenSteer. It has code to solve problems like this. Look at 'steerForSeek' or 'steerForPursuit'.
Have you considered negative feedback on the recent change of bearing over change of time?
Details left as an exercise.
The suggestions is completely serious: if the target does not maneuver this should obtain a near optimal intercept. And it should converge even if the target is actively dodging.
Need more detail?
Solving in a two dimensional space for ease of notation. Take \vec{m} to be the location of the missile and vector \vec{t} To be the location of the target.
The current heading in the direction of motion over last time unit: \vec{h} = \bar{\vec{m}_i - \vec{m}_i-1}}. Let r be the normlized vector between the missile and the target: \vec{r} = \bar{\vec{t} - \vec{m}}. The bearing is b = \vec{r} \dot \vec{h} Compute the bearing at each time tick, and the change thereof, and change heading to minimize that quantity.
The math is harrier in 3d because of the need to find the plane of action at each step, but the process is the same.
You'll want to interpolate the trajectory of both the target and the missile as a function of time. Then look for the times in which the coordinates of the objects are within some acceptable error.