How to SET on specific redis server with StackExchange.Redis client? - redis

I have 3 redis servers running in docker containers. From redis-cli I can SET on specific server.
SET myValue 100
How can I do this with StackExchange.Redis client?
I don't see anything in server api that allows to do that. Bear in mind that I don't know much about Redis at all.
var connection = ConnectionMultiplexer.Connect("localhost:6379,localhost:6380,localhost:6381");
var server = connection.GetServer("localhost", 6381);
server.???

SE.Redis expects to be managing a single logical keyspace; the support for multiple nodes is intended either for master/replica setups, or for redis-cluster (although, in the case of cluster, node discovery is achieved via the redis API, so a single node would be fine if it is reachable). With that in place: the selection of servers is implicit from the operation (i.e. writes need to go to a master, and in the case of "cluster", the keyspace shard mapping should be applied).
If you want to write to separate servers as though they are separate databases, you should use a connection per server; not a single connection that spans them all. Right now, SE.Redis is probably detecting 3 master nodes and electing to use one of them arbitrarily. You can see what it thinks by passing a TextWriter to the Connect/ConnectAsync method.

Related

Is there a way to fully separate two redis databases for pub/sub usage?

Scenario: Two instances of an application share the same redis instance, but use different databases. The application makes use of the redis pub/sub functions to exchange data between services.
Problem: When application instance A publishes something (on redis database 1), application instance B (running on redis database 2) receives the message.
Expectation: As both instances of the application use a different database, I would expect not only that the keys in redis are hold separately, but pub/sub subscribers aswell.
Question: Can I tell redis to keep pub/sub separate for each database?
No - PubSub is shared across all clients connected to the server, regardless of their currently SELECTed database (shared database/numbered database/keyspace). While you can use different channels and such, real separation is possible only by using two Redis instances.
Note: using shared/numbered databases isn't recommended - always use dedicated Redis instances per app/service/use case
As https://redis.io/docs/manual/pubsub/#database--scoping suggests
If you need scoping of some kind, prefix the channels with the name of
the environment (test, staging, production...).

Redis sentinel vs clustering

I understand redis sentinel is a way of configuring HA (high availability) among multiple redis instances. As I see, there is one redis instance actively serving the client requests at any given time. There are two additional servers are on standby (waiting for a failure to happen, so one of them can be in action again).
Is it waste of resources?
Is there a better way of using full use of the resources available?
Is Redis clustering an alternative to Redis sentinel?
I already looked up redis documentation for sentinel and clustering, can somebody having experience explain please.
UPDATE
OK. In my real deployment scenario I have two servers dedicated for redis. I have another server my Jboss server is running. The application running in Jboss is configured to connect to redis master server(M).
Failover scenario
Ideally, I think when Master cache server fails (either Redis process goes down or machine failure) the application in Jboss needs to connect to Slave cache server. How would I configure the redis servers to achieve this?
+--------+ +--------+
| Master |---------| Slave |
| | | |
+--------+ +--------+
Configuration: quorum = 1
First, lets talk sentinel.
Sentinel manages the failover, it doesn't configure Redis for HA. It is an important distinction. Second, the diagram you posted is actually a bad setup - you don't want to run Sentinel on the same node as the Redis nodes it is managing. When you lose that host you lose both.
As to "Is it waste of resources?" it depends on your use case. You don't need three Redis nodes in that setup, you only need two. Three increases your redundancy, but is not required. If you need the added redundancy then it isn't a waste of resources. If you don't need redundancy then you just run a single Redis instance and call it good - as running more would be "wasted".
Another reason for running two slaves would be to split reads. Again, if you need it then it wouldn't be a waste.
As to "Is there a better way of using full use of the resources available?" we can't answer that as it is far too dependent on your specific scenario and code. That said if the amount of data to store is "small" and the command rate is not exceedingly high, then remember you don't need to dedicate a host to Redis.
Now for "Is Redis clustering an alternative to Redis sentinel?".
It really depends entirely on your use case. Redis Cluster is not an HA solution - it is a multiple writer/larger-than-ram solution. If your goal is just HA then it likely won't be suitable for you. Redis Cluster comes with limitations, particularly around multi-key operations, so it isn't necessarily a straightforward "just use cluster" operation.
If you think having three hosts running Redis (and three running sentinel) is wasteful, you'll likely hold Cluster to be even more so as it does require more resources.
The questions you've asked are probably too broad and opinion-based to survive as written. If you have a specific case/problem you are working out please update with that so we can provide specific assistance and information.
Update for specifics:
For proper failover management in your scenario I would go with 3 sentinels, one running on your JBoss server. If you have 3 JBoss nodes then go with one on each. I'd have a Redis pod (master+slave) on separate nodes, and let sentinel manage the failover.
From there it is a matter of wiring up JBoss/Jedis to use Sentinel for it's information and connection management. As I don't use those a quick search turns up that Jedis has the support for it, you just need to configure it correctly. Some examples I found are at Looking for an example of Jedis with Sentinel and https://github.com/xetorthio/jedis/issues/725 which talk about JedisSentinelPool being the route for using a pool.
When Sentinel executes a failover the clients will be disconnected and Jedis will (should?) handle the reconnection by asking the Sentinels who the current master is.
This is not direct answer to your question, but think, it's helpful information for Redis newbies, like me. Also this question appears as the first link in google when searching the "Redis cluster vs sentinel".
Redis Sentinel is the name of the Redis high availability solution...
It has nothing to do with Redis Cluster and is intended to be used by
people that don't need Redis Cluster, but simply a way to perform
automatic fail over when a master instance is not functioning
correctly.
Taken from the Redis Sentinel design draft 1.3
It's not obviuos when you are new to Redis and implementing failover solution. Official documentations about sentinel and clustering doens't compare to each other, so it's hard to choose the right way without reading tons of documentations.
The recommendation, everywhere, is to start with an odd number of instances, not using two or a multiple of two. That was corrected, but lets correct some other points.
First, to say that Sentinel provides failover without HA is false. When you have failover, you have HA with the additional benefit of application state being replicated. The distinction is that you can have HA in a system without replication (it's HA but it's not fault tolerant).
Second, running a sentinel on the same machine as its target redis instance is not a "bad setup": if you lose your sentinel, or your redis instance, or the whole machine, the results are the same. That's probably why every example of such configurations shows both running on the same machine.
Additional info to above answers
Redis Cluster
One main purpose of the Redis cluster is to equally/uniformly distribute
your data load by sharding
Redis Cluster does not use consistent hashing, but a different form of sharding where every key is conceptually part of what is called as hash slot
There are 16384 hash slots in Redis Cluster, Every node in a Redis Cluster is responsible for a subset of the hash slots, so, for example, you may have a cluster with 3 nodes,
where:
Node A contains hash slots from 0 to 5500,
Node B contains hash slots from 5501 to 11000,
Node C contains hash slots from 11001 to 16383
This allows us to add and remove nodes in the cluster easily. For example, if we want to add a new node D, we need to move some hash slot from nodes A, B, C to D
Redis cluster supports the master-slave structure, you can create slaves A1,B1, C2 along with master A, B, C when creating a cluster, so when master B goes down slave B1 gets promoted as master
You don't need additional failover handling when using Redis Cluster and you should definitely not point Sentinel instances at any of the Cluster nodes.
So in practical terms, what do you get with Redis Cluster?
1.The ability to automatically split your dataset among multiple nodes.
2.The ability to continue operations when a subset of the nodes are experiencing failures or are unable to communicate with the rest of the cluster.
Redis Sentinel
Redis supports multiple slaves replicating data from a master node.
This provides a backup for data in master node.
Redis Sentinel is a system designed to manage master and slave. It runs as separate program. The minimum number of sentinels required in an ideal system is 3. They communicate among themselves and make sure that the Master is alive, if not alive they will promote one of the slaves as master, so later when the dead node spins up it will be acting as a slave for the new master
Quorum is configurable. Basically it is the number of sentinels that need to agree as the master is down. N/2 +1 should agree. N is the number of nodes in the Pod (note this setup is called a pod and is not a cluster)
So in practical terms, what do you get with Redis Sentinel?
It will make sure that Master is always available (if master goes down, the slave will be promoted as master)
Reference :
https://fnordig.de/2015/06/01/redis-sentinel-and-redis-cluster/
https://redis.io/topics/cluster-tutorial
This is my understanding after banging my head throughout the documentation.
Sentinel is a kind of hot standby solution where the slaves are kept replicated and ready to be promoted at any time. However, it won't support any multi-node writes. Slaves can be configured for read operations. It's NOT true that Sentinel won't provide HA, it has all the features of a typical active-passive cluster ( though that's not the right term to use here ).
Redis cluster is more or less a distributed solution, working on top of shards. Each chunk of data is being distributed among masters and slaves nodes. A minimum replication factor of 2 ensures that you have two active shards available across master and slaves.
If you know the sharding in Mongo or Elasticsearch, it will be easy to catch up.
Redis can operate in partitioned cluster (with many masters and slaves of those masters) or a single instance mode (single master with replica slaves).
The link here says:
When using Redis in single instance mode, in which a single Redis server manages the entire unpartitioned database, Redis Sentinel is used to manage its availability
It also says:
A Redis cluster, in which data is partitioned among multiple primary instances, manages availability by itself and requires no extra components.
So HA can be ensured in the 2 mentioned scenarios. Hope this clears the doubts. Redis cluster and sentinels are not alternative to each other. They are just used to ensure HA in different cases of partitioned or non-partitioned master.
Redis Sentinel performs the failover promoting replicas when they see a master is down. You typically want an odd number of sentinel nodes. For the example of one master and one replica, 3 sentinels should be used so there can be a consensus on the decision. Ideally the 3rd sentinel is on a 3rd server so the decision is not skewed (depending on failure). Sentinel takes care of changing the master/replica config settings on your nodes so that promotion and syncing occurs in the correct order and you don’t overwrite data by bringing on an old failed master that now contains older data.
Once you have your sentinel nodes set up to perform failovers, you need to ensure you are pointing to the correct instance. See an example of HAProxy configuration for this. HAProxy performs health checks and will point to the new master if a failure occurs.
Clustering will allow you to scale horizontally and can help handle high loads. It does take a bit of work to set up and configure up front.
There is an open source fork of Redis, “KeyDB” that has eliminated the need for sentinel nodes with an active-replica option. This allows the replica node to accept reads and writes. When a failover occurs HAProxy stops reads/writes with the failed node and just uses the remaining active node which is already sync’d. Timestamping enables the failed nodes to rejoin automatically and resync without losing data when they come back online. Setup is simple and for higher traffic you don’t need special upfront setup to direct reads to the replica node and read/writes to the master. See example of active replication here. KeyDB is also multi-threaded which for some applications might be an alternative to clustering, but really depends on what your needs are.
There is also an example of setting up clustering manually and with the create-cluster tool. These are the same steps if you are using Redis (replace 'keydb' with 'redis' in instruction)

How does StackExchange.Redis use multiple endpoints and connections?

As explained in the StackExchange.Redis Basics documentation, you can connect to multiple Redis servers, and StackExchange.Redis will automatically determine the master/slave setup. Quoting the relevant part:
A more complicated scenario might involve a master/slave setup; for this usage, simply specify all the desired nodes that make up that logical redis tier (it will automatically identify the master):
ConnectionMultiplexer redis = ConnectionMultiplexer.Connect("server1:6379,server2:6379");
I performed a test in which I triggered a failover, such that the master would go down for a bit, causing the old slave to become the new master, and the old master to become the new slave. I noticed that in spite of this change, StackExchange.Redis keeps sending commands to the old master, causing write operations to fail.
Questions on the above:
How does StackExchange.Redis decide which endpoint to use?
How should multiple endpoints (as in the above example) be used?
I also noticed that for each connect, StackExchange.Redis opens two physical connections, one of which is some sort of subscription. What is this used for exactly? Is it used by Sentinel instances?
What should happen there is that it uses a number of things (in particular the defined replication configuration) to determine which is the master, and direct traffic at the appropriate server (respecting the "server" parameter, which defaults to "prefer master", but which always sends write operations to a master).
If a "cannot write to a readonly slave" (I can't remember the exact text) error is received, it will try to re-establish the configuration, and should switch automatically to respect this. Unfortunately, redis does not broadcast configuration changes, so the library can't detect this ahead of time.
Note that if you use the library methods to change master, it can exploit pub/sub to detect that change immediately and automatically.
Re the second connection: that would be for pub/sub; it spins this up ahead of time, as by default it attempts to listen for the library-specific configuration broadcasts.

How to build a simplified redis cluster (support data sharding and load balance)?

Since the redis cluster is still a work in progress, I want to build a simplied one by myselfin the current stage. The system should support data sharding,load balance and master-slave backup. A preliminary plan is as follows:
Master-slave: use multiple master-slave pairs in different locations to enhance the data security. Matsters are responsible for the write operation, while both masters and slaves can provide the read service. Datas are sent to all the masters during one write operation. Use Keepalived between the master and the slave to detect failures and switch master-slave automatically.
Data sharding: write a consistant hash on the client side to support data sharding during write/read in case the memory is not enougth in single machine.
Load balance: use LVS to redirect the read request to the corresponding server for the load balance.
My question is how to combine the LVS and the data sharding together?
For example, because of data sharding, all keys are splited and stored in server A,B and C without overlap. Considering the slave backup and other master-slave pairs, the system will contain 1(A,B,C), 2(A,B,C) , 3(A,B,C) and so on, where each one has three servers. How to configure the LVS to support the redirection in such a situation when a read request comes? Or is there other approachs in redis to achieve the same goal?
Thanks:)
You can get really close to what you need by using:
twemproxy shard data across multiple redis nodes (it also supports node ejection and connection pooling)
redis slave master/slave replication
redis sentinel to handle master failover
depending on your needs you probably need some script listening to fail overs (see sentinel docs) and clean things up when a master goes down

Couchbase node failure

My understanding could be amiss here. As I understand it, Couchbase uses a smart client to automatically select which node to write to or read from in a cluster. What I DON'T understand is, when this data is written/read, is it also immediately written to all other nodes? If so, in the event of a node failure, how does Couchbase know to use a different node from the one that was 'marked as the master' for the current operation/key? Do you lose data in the event that one of your nodes fails?
This sentence from the Couchbase Server Manual gives me the impression that you do lose data (which would make Couchbase unsuitable for high availability requirements):
With fewer larger nodes, in case of a node failure the impact to the
application will be greater
Thank you in advance for your time :)
By default when data is written into couchbase client returns success just after that data is written to one node's memory. After that couchbase save it to disk and does replication.
If you want to ensure that data is persisted to disk in most client libs there is functions that allow you to do that. With help of those functions you can also enshure that data is replicated to another node. This function is called observe.
When one node goes down, it should be failovered. Couchbase server could do that automatically when Auto failover timeout is set in server settings. I.e. if you have 3 nodes cluster and stored data has 2 replicas and one node goes down, you'll not lose data. If the second node fails you'll also not lose all data - it will be available on last node.
If one node that was Master goes down and failover - other alive node becames Master. In your client you point to all servers in cluster, so if it unable to retreive data from one node, it tries to get it from another.
Also if you have 2 nodes in your disposal you can install 2 separate couchbase servers and configure XDCR (cross datacenter replication) and manually check servers availability with HA proxies or something else. In that way you'll get only one ip to connect (proxy's ip) which will automatically get data from alive server.
Hopefully Couchbase is a good system for HA systems.
Let me explain in few sentence how it works, suppose you have a 5 nodes cluster. The applications, using the Client API/SDK, is always aware of the topology of the cluster (and any change in the topology).
When you set/get a document in the cluster the Client API uses the same algorithm than the server, to chose on which node it should be written. So the client select using a CRC32 hash the node, write on this node. Then asynchronously the cluster will copy 1 or more replicas to the other nodes (depending of your configuration).
Couchbase has only 1 active copy of a document at the time. So it is easy to be consistent. So the applications get and set from this active document.
In case of failure, the server has some work to do, once the failure is discovered (automatically or by a monitoring system), a "fail over" occurs. This means that the replicas are promoted as active and it is know possible to work like before. Usually you do a rebalance of the node to balance the cluster properly.
The sentence you are commenting is simply to say that the less number of node you have, the bigger will be the impact in case of failure/rebalance, since you will have to route the same number of request to a smaller number of nodes. Hopefully you do not lose data ;)
You can find some very detailed information about this way of working on Couchbase CTO blog:
http://damienkatz.net/2013/05/dynamo_sure_works_hard.html
Note: I am working as developer evangelist at Couchbase