I have a large dataframe I want to compute on in parallel. The call I want to parallelize is
df = by(df, [:Chromosome], some_func)
Is there a way to easily parallelize this? Preferably without any copying.
Also, I guess the kinds of parallelization used should be different depending on the size of the groups created by by.
Minimal reproducible example to use in answers:
using DataFrames, CSV, Pkg
iris = CSV.read(joinpath(Pkg.dir("DataFrames"), "test/data/iris.csv"))
iris_count = by(iris, [:Species], nrow)
On Windows run in console (adjust to the number of cores/threads you have):
$ set JULIA_NUM_THREADS=4
$ julia
On Linux run in console:
$ export JULIA_NUM_THREADS=4
$ julia
Now check if it works:
julia> Threads.nthreads()
4
Run the code below (I update your code to match Julia 1.0):
using CSV, DataFrames, BenchmarkTools
iris = CSV.read(joinpath(dirname(pathof(DataFrames)),"..","test/data/iris.csv"))
iris.PetalType = iris.PetalWidth .> 2; #add an additional column for testing
Let us define some function that operates on a part of a DataFrame
function nrow2(df::AbstractDataFrame)
val = nrow(df)
#do something much more complicated...
val
end
Now the most complicated part of the puzzle comes:
function par_by(df::AbstractDataFrame,f::Function,cols::Symbol...;block_size=40)
#f needs to be precompiled - we precompile using the first row of the DataFrame.
#If try to do it within #thread macro
#Julia will crash in most ugly and unexpected ways
#if you comment out this line you can observe a different crash with every run
by(view(df,1:1),[cols...],f);
nr = nrow(df)
local dfs = DataFrame()
blocks = Int(ceil(nr/block_size))
s = Threads.SpinLock()
Threads.#threads for block in 1:blocks
startix = (block-1)*block_size+1
endix = min(block*block_size,nr)
rv= by(view(df,startix:endix), [cols...], f)
Threads.lock(s)
if nrow(dfs) == 0
dfs = rv
else
append!(dfs,rv)
end
Threads.unlock(s)
end
dfs
end
Let's test it and aggregate the results
julia> res = par_by(iris,nrow2,:Species)
6×2 DataFrame
│ Row │ Species │ x1 │
│ │ String │ Int64 │
├─────┼────────────┼───────┤
│ 1 │ versicolor │ 20 │
│ 2 │ virginica │ 20 │
│ 3 │ setosa │ 10 │
│ 4 │ versicolor │ 30 │
│ 5 │ virginica │ 30 │
│ 6 │ setosa │ 40 │
julia> by(res, :Species) do df;DataFrame(x1=sum(df.x1));end
3×2 DataFrame
│ Row │ Species │ x1 │
│ │ String │ Int64 │
├─────┼────────────┼───────┤
│ 1 │ setosa │ 50 │
│ 2 │ versicolor │ 50 │
│ 3 │ virginica │ 50 │
The par_by also supports multiple columns
julia> res = par_by(iris,nrow2,:Species,:PetalType)
8×3 DataFrame
│ Row │ Species │ PetalType │ x1 │
│ │ String │ Bool │ Int64 │
├─────┼───────────┼───────────┼───────┤
│ 1 │ setosa │ false │ 40 │
⋮
│ 7 │ virginica │ true │ 13 │
│ 8 │ virginica │ false │ 17 │
#Bogumił Kamiński commented that it is reasonable to use groupby() before threading. Unless for some reason groupby cost is to high (requires full scan) this is the recommended way - makes the aggregation simpler.
ress = DataFrame(Species=String[],count=Int[])
for group in groupby(iris,:Species)
r = par_by(group,nrow2,:Species,block_size=15)
push!(ress,[r.Species[1],sum(r.x1)])
end
julia> ress
3×2 DataFrame
│ Row │ Species │ count │
│ │ String │ Int64 │
├─────┼────────────┼───────┤
│ 1 │ setosa │ 50 │
│ 2 │ versicolor │ 50 │
│ 3 │ virginica │ 50 │
Note that in the example above are only three groups so we parallelize over each group. However, if you have big number of groups you could consider running:
function par_by2(df::AbstractDataFrame,f::Function,cols::Symbol...)
res = NamedTuple[]
s = Threads.SpinLock()
groups = groupby(df,[cols...])
f(view(groups[1],1:1));
Threads.#threads for g in 1:length(groups)
rv= f(groups[g])
Threads.lock(s)
key=tuple([groups[g][cc][1] for cc in cols]...)
push!(res,(key=key,val=rv))
Threads.unlock(s)
end
res
end
julia> iris.PetalType = iris.PetalWidth .> 2;
julia> par_by2(iris,nrow2,:Species,:PetalType)
4-element Array{NamedTuple,1}:
(key = ("setosa", false), val = 50)
(key = ("versicolor", false), val = 50)
(key = ("virginica", true), val = 23)
(key = ("virginica", false), val = 27)
Let me know if it worked for you.
Since more people might have similar problem I will make this code into a Julia package (and that is why I kept this code to be very general)
Start julia with julia -p 4 then run
using CSV, DataFrames
iris = CSV.read(joinpath(dirname(pathof(DataFrames)),"..","test/data/iris.csv"))
g = groupby(iris, :Species)
pmap(nrow, [i for i in g])
This will run groupby in parallel.
Related
I thought that the exclamation mark ! is the symbol for the logical NOT operator. Now, learning indexing in the DataFrames package, I came across this: data[!,:Treatment]. Which seems to be the same as using the known colon symbol :
data[:,:Treatment]==data[!,:Treatment] is true.
Why this redundancy then?
! in indexing is specific to DataFrames, and signals that you want a reference to the underlying vector storing the data, rather than a copy of it. You can read all about indexing DataFrames here. In your example the are both == because all values are identical, but they are not === since df[:, :Treatment] gives you a copy of the underlying data.
Example:
julia> using DataFrames
julia> df = DataFrame(y = [1, 2, 3]);
julia> df[:, :y] == df[!, :y] # true because all values are equal
true
julia> df[:, :y] === df[!, :y] # false because they are not the same vector
false
Quoting the documentation of DataFrames.jl:
Columns can be directly (i.e. without copying) accessed via df.col or df[!, :col]. [...] Since df[!, :col] does not make a copy, changing the elements of the column vector returned by this syntax will affect the values stored in the original df. To get a copy of the column use df[:, :col]: changing the vector returned by this syntax does not change df.
An example might make this clearer:
julia> using DataFrames
julia> df = DataFrame(x = rand(5), y=rand(5))
5×2 DataFrame
│ Row │ x │ y │
│ │ Float64 │ Float64 │
├─────┼──────────┼───────────┤
│ 1 │ 0.937892 │ 0.42232 │
│ 2 │ 0.54413 │ 0.932265 │
│ 3 │ 0.961372 │ 0.680818 │
│ 4 │ 0.958788 │ 0.923667 │
│ 5 │ 0.942518 │ 0.0428454 │
# `a` is a copy of `df.x`: modifying it will not affect `df`
julia> a = df[:, :x]
5-element Array{Float64,1}:
0.9378915597741728
0.544130347207969
0.9613717853719412
0.958788066884128
0.9425183324742632
julia> a[2] = 1;
julia> df
5×2 DataFrame
│ Row │ x │ y │
│ │ Float64 │ Float64 │
├─────┼──────────┼───────────┤
│ 1 │ 0.937892 │ 0.42232 │
│ 2 │ 0.54413 │ 0.932265 │
│ 3 │ 0.961372 │ 0.680818 │
│ 4 │ 0.958788 │ 0.923667 │
│ 5 │ 0.942518 │ 0.0428454 │
# `b` is a view of `df.x`: any change made to it will be reflected in df
julia> b = df[!, :x]
5-element Array{Float64,1}:
0.9378915597741728
0.544130347207969
0.9613717853719412
0.958788066884128
0.9425183324742632
julia> b[2] = 1;
julia> df
5×2 DataFrame
│ Row │ x │ y │
│ │ Float64 │ Float64 │
├─────┼──────────┼───────────┤
│ 1 │ 0.937892 │ 0.42232 │
│ 2 │ 1.0 │ 0.932265 │
│ 3 │ 0.961372 │ 0.680818 │
│ 4 │ 0.958788 │ 0.923667 │
│ 5 │ 0.942518 │ 0.0428454 │
Note that, since the indexing with ! does not involve any data copy, it will generally be more efficient.
I have a DataFrame and I want to compute a bunch of group-level summary statistics. Some of those statistics are derived from other statistics I want to compute first.
df = DataFrame(a=[1,1,2,3], b=[4,5,6,8])
df2 = df |>
#groupby(_.a) |>
#map({a = key(_),
bm = mean(_.b),
cs = sum(_.b),
d = _.bm + _.cs}) |>
DataFrame
ERROR: type NamedTuple has no field bm
The closest I can get is this, which works, but gets very repetitive as the number of initial statistics I want to carry forward into the computation of derived statistics grows:
df2 = df |>
#groupby(_.a) |>
#map({a=key(_), bm=mean(_.b), cs=sum(_.b)}) |>
#map({a=_.a, bm=_.bm, cs=_.cs, d=_.bm + _.cs}) |>
DataFrame
3×4 DataFrame
│ Row │ a │ bm │ cs │ d │
│ │ Int64 │ Float64 │ Int64 │ Float64 │
├─────┼───────┼─────────┼───────┼─────────┤
│ 1 │ 1 │ 4.5 │ 9 │ 13.5 │
│ 2 │ 2 │ 6.0 │ 6 │ 12.0 │
│ 3 │ 3 │ 8.0 │ 8 │ 16.0 │
Another option is to create a new DataFrame of first-order results, run a new #map on that to compute the second-order results, and then join the two afterward. Is there any way in Query, DataFramesMeta, or even bare DataFrames to do it in one relatively concise step?
Just for reference, the "create multiple DataFrames" approach:
df = DataFrame(a=[1,1,2,3], b=[4,5,6,8])
df2 = df |>
#groupby(_.a) |>
#map({a=key(_), bm=mean(_.b), cs=sum(_.b)}) |>
DataFrame
df3 = df2 |>
#map({a=_.a, d=_.bm + _.cs}) |>
DataFrame
df4 = innerjoin(df2, df3, on = :a)
3×4 DataFrame
│ Row │ a │ bm │ cs │ d │
│ │ Int64 │ Float64 │ Int64 │ Float64 │
├─────┼───────┼─────────┼───────┼─────────┤
│ 1 │ 1 │ 4.5 │ 9 │ 13.5 │
│ 2 │ 2 │ 6.0 │ 6 │ 12.0 │
│ 3 │ 3 │ 8.0 │ 8 │ 16.0 │
I have the following Dataframe
using DataFrames, Statistics
df = DataFrame(name=["John", "Sally", "Kirk"],
age=[23., 42., 59.],
children=[3,5,2], height = [180, 150, 170])
print(df)
3×4 DataFrame
│ Row │ name │ age │ children │ height │
│ │ String │ Float64 │ Int64 │ Int64 │
├─────┼────────┼─────────┼──────────┼────────┤
│ 1 │ John │ 23.0 │ 3 │ 180 │
│ 2 │ Sally │ 42.0 │ 5 │ 150 │
│ 3 │ Kirk │ 59.0 │ 2 │ 170 │
I can compute the mean of a column as follow:
println(mean(df[:4]))
166.66666666666666
Now I want to get the mean of all the numeric column and tried this code:
x = [2,3,4]
for i in x
print(mean(df[:x[i]]))
end
But got the following error message:
MethodError: no method matching getindex(::Symbol, ::Int64)
Stacktrace:
[1] top-level scope at ./In[64]:3
How can I solve the problem?
You are trying to access the DataFrame's column using an integer index specifying the column's position. You should just use the integer value without any : before i, which would create the symbol :i but you do not a have column named i.
x = [2,3,4]
for i in x
println(mean(df[i])) # no need for `x[i]`
end
You can also index a DataFrame using a Symbol denoting the column's name.
x = [:age, :children, :height];
for c in x
println(mean(df[c]))
end
You get the following error in your attempt because you are trying to access the ith index of the symbol :x, which is an undefined operation.
MethodError: no method matching getindex(::Symbol, ::Int64)
Note that :4 is just 4.
julia> :4
4
julia> typeof(:4)
Int64
Here is a one-liner that actually selects all Number columns:
julia> mean.(eachcol(df[findall(x-> x<:Number, eltypes(df))]))
3-element Array{Float64,1}:
41.333333333333336
3.3333333333333335
166.66666666666666
For many scenarios describe is actually more convenient:
julia> describe(df)
4×8 DataFrame
│ Row │ variable │ mean │ min │ median │ max │ nunique │ nmissing │ eltype │
│ │ Symbol │ Union… │ Any │ Union… │ Any │ Union… │ Nothing │ DataType │
├─────┼──────────┼─────────┼──────┼────────┼───────┼─────────┼──────────┼──────────┤
│ 1 │ name │ │ John │ │ Sally │ 3 │ │ String │
│ 2 │ age │ 41.3333 │ 23.0 │ 42.0 │ 59.0 │ │ │ Float64 │
│ 3 │ children │ 3.33333 │ 2 │ 3.0 │ 5 │ │ │ Int64 │
│ 4 │ height │ 166.667 │ 150 │ 170.0 │ 180 │ │ │ Int64 │
In the question println(mean(df[4])) works as well (instead of println(mean(df[:4]))).
Hence we can write
x = [2,3,4]
for i in x
println(mean(df[i]))
end
which works
I need to convert the following DataFrame
julia> df = DataFrame(:A=>["", "2", "3"], :B=>[1.1, 2.2, 3.3])
which looks like
3×2 DataFrame
│ Row │ A │ B │
│ │ String │ Float64 │
├─────┼────────┼─────────┤
│ 1 │ │ 1.1 │
│ 2 │ 2 │ 2.2 │
│ 3 │ 3 │ 3.3 │
I would like to convert A column from Array{String,1} to array of Int with missing values.
I tried
julia> df.A = tryparse.(Int, df.A)
3-element Array{Union{Nothing, Int64},1}:
nothing
2
3
julia> df
3×2 DataFrame
│ Row │ A │ B │
│ │ Union… │ Float64 │
├─────┼────────┼─────────┤
│ 1 │ │ 1.1 │
│ 2 │ 2 │ 2.2 │
│ 3 │ 3 │ 3.3 │
julia> eltype(df.A)
Union{Nothing, Int64}
but I'm getting A column with elements of type Union{Nothing, Int64}.
nothing (of type Nothing) and missing (of type Missing) seems to be 2 differents kind of value.
So I wonder how I can A columns with missing values instead?
I also wonder if missing and nothing leads to different performance.
I would have done the following:
julia> df.A = map(x->begin val = tryparse(Int, x)
ifelse(typeof(val) == Nothing, missing, val)
end, df.A)
3-element Array{Union{Missing, Int64},1}:
missing
2
3
julia> df
3×2 DataFrame
│ Row │ A │ B │
│ │ Int64⍰ │ Float64 │
├─────┼─────────┼─────────┤
│ 1 │ missing │ 1.1 │
│ 2 │ 2 │ 2.2 │
│ 3 │ 3 │ 3.3 │
I think missing is more suitable for dataframes which indeed have missing values, instead of nothing, because the latter is more considered as a void in C, or None in Python, see here.
As a side note, Missing type has some Julia functionalities.
Replacing nothing by missing can simply be done using replace:
julia> df.A = replace(df.A, nothing=>missing)
3-element Array{Union{Missing, Int64},1}:
missing
2
3
julia> df
3×2 DataFrame
│ Row │ A │ B │
│ │ Int64⍰ │ Float64 │
├─────┼─────────┼─────────┤
│ 1 │ missing │ 1.1 │
│ 2 │ 2 │ 2.2 │
│ 3 │ 3 │ 3.3 │
an other solution is to use tryparsem function defined as following
tryparsem(T, str) = something(tryparse(T, str), missing)
and use it like
julia> df = DataFrame(:A=>["", "2", "3"], :B=>[1.1, 2.2, 3.3])
julia> df.A = tryparsem.(Int, df.A)
I want to create a indexed subset of a DataFrame and use a variable inside it. In this case i want to change all -9999 values of the first column to NA's. If I do: df[df[:1] .== -9999, :1] = NA it works like it should.. But if i use a variable as the indexer it througs an error (LoadError: KeyError: key :i not found):
i = 1
df[df[:i] .== -9999, :i] = NA
:i is actually a symbol in julia:
julia> typeof(:i)
Symbol
you can define a variable binding to a symbol like this:
julia> i = Symbol(2)
Symbol("2")
then you can simply use df[df[i] .== 1, i] = 123:
julia> df
10×1 DataFrames.DataFrame
│ Row │ 2 │
├─────┼─────┤
│ 1 │ 123 │
│ 2 │ 2 │
│ 3 │ 3 │
│ 4 │ 4 │
│ 5 │ 5 │
│ 6 │ 6 │
│ 7 │ 7 │
│ 8 │ 8 │
│ 9 │ 9 │
│ 10 │ 10 │
It's worth noting that in your example df[df[:1] .== -9999, :1], :1 is NOT a symbol:
julia> :1
1
In fact, the expression is equal to df[df[1] .== -9999, 1] which works in that there is a corresponding getindex method whose argument (col_ind) can accept a common index:
julia> #which df[df[1].==1, 1]
getindex{T<:Real}(df::DataFrames.DataFrame, row_inds::AbstractArray{T,1}, col_ind::Union{Real,Symbol})
Since you just want to change the first (n) column, there is no difference between Symbol("1") and 1 as long as your column names are regularly arranged as:
│ Row │ 1 │ 2 │ 3 │...
├─────┼─────┤─────┼─────┤
│ 1 │ │ │ │...