This question already has answers here:
How to convert an XML file to nice pandas dataframe?
(5 answers)
Closed 1 year ago.
Can someone please help convert the following XML file to Pandas dataframe:
<?xml version="1.0" encoding="UTF-8" ?>
<root>
<bathrooms type="dict">
<n35237 type="number">1.0</n35237>
<n32238 type="number">3.0</n32238>
<n44699 type="number">nan</n44699>
</bathrooms>
<price type="dict">
<n35237 type="number">7020000.0</n35237>
<n32238 type="number">10000000.0</n32238>
<n44699 type="number">4128000.0</n44699>
</price>
<property_id type="dict">
<n35237 type="number">35237.0</n35237>
<n32238 type="number">32238.0</n32238>
<n44699 type="number">44699.0</n44699>
</property_id>
</root>
It should look like this --
OUTPUT
This is the code I have written:-
import pandas as pd
import xml.etree.ElementTree as ET
tree = ET.parse('real_state.xml')
root = tree.getroot()
dfcols = ['property_id', 'price', 'bathrooms']
df_xml = pd.DataFrame(columns=dfcols)
for node in root:
property_id = node.attrib.get('property_id')
price = node.attrib.get('price')
bathrooms = node.attrib.get('bathrooms')
df_xml = df_xml.append(
pd.Series([property_id, price, bathrooms], index=dfcols),
ignore_index=True)
print(df_xml)
I am getting None everywhere, instead of the actual values. Can someone please tell how it can be fixed. Thanks!
if the data is simple, like this, then you can do something like:
from lxml import objectify
xml = objectify.parse('Document1.xml')
root = xml.getroot()
bathrooms = [child.text for child in root['bathrooms'].getchildren()]
price = [child.text for child in root['price'].getchildren()]
property_id = [child.text for child in root['property_id'].getchildren()]
data = [bathrooms, price, property_id]
df = pd.DataFrame(data).T
df.columns = ['bathrooms', 'price', 'property_id']
bathrooms price property_id
0 1.0 7020000.0 35237.0
1 3.0 10000000.0 32238.0
2 nan 4128000.0 44699.0
if it is more complex then a loop is better. You can do something like
from lxml import objectify
xml = objectify.parse('Document1.xml')
root = xml.getroot()
data=[]
for i in range(len(root.getchildren())):
data.append([child.text for child in root.getchildren()[i].getchildren()])
df = pd.DataFrame(data).T
df.columns = ['bathrooms', 'price', 'property_id']
I have had success using this function from the xmltodict package:
import xmltodict
xmlDict = xmltodict.parse(xmlData)
df = pd.DataFrame.from_dict(xmlDict)
What I like about this, is I can easily do some dictionary manipulation in between parsing the xml and making my df. Also, it helps to explore the data as a dict if the structure is wily.
Hello all I found another really easily way to solve those question.
reference: https://www.youtube.com/watch?v=WVrg5-cjr5k
import xml.etree.ElementTree as ET
import pandas as pd
import codecs
## open notebook and save your xml file to text.xml
with codecs.open('text.xml', 'r', encoding='utf8') as f:
tt = f.read()
def xml2df(xml_data):
root = ET.XML(xml_data)
all_records = []
for i, child in enumerate(root):
record = {}
for sub_child in child:
record[sub_child.tag] = sub_child.text
all_records.append(record)
return pd.DataFrame(all_records)
df_xml1 = xml2df(tt)
print(df_xml1)
for better understanding of ET you can use underneath code to see what in side of your xml
import xml.etree.ElementTree as ET
import pandas as pd
import codecs
with codecs.open('text.xml', 'r', encoding='utf8') as f:
tt = f.read()
root = ET.XML(tt)
print(type(root))
print(root[0])
for ele in root[0]:
print(ele.tag + '////' + ele.text)
print(root[0][0].tag)
Once you finish running the program you can see the output underneath:
C:\Users\username\Documents\pycode\Scripts\python.exe C:/Users/username/PycharmProjects/DestinationLight/try.py
n35237 n32238 n44699
0 1.0 3.0 nan
1 7020000.0 10000000.0 4128000.0
2 35237.0 32238.0 44699.0
<class 'xml.etree.ElementTree.Element'>
<Element 'bathrooms' at 0x00000285006B6180>
n35237////1.0
n32238////3.0
n44699////nan
n35237
Process finished with exit code 0
Related
I am trying to write a pandas dataframe to a blob storage in Azure with Databricks. I am able to make the connection to the blob storage, but I am not able to write my dataframe with the BlobClient library of "azure.storage.blob".
I've read tutorials on the internet, but they have deprecated libraries, and I can't find a current solution. I am using version "azure-storage-blob==12.12.0" and my code is as follows:
from azure.storage.blob import BlobClient
import pandas as pd
import io
output = io.StringIO()
head = ["col1" , "col2" , "col3"]
l = [[1 , 2 , 3],[4,5,6] , [8 , 7 , 9]]
df = pd.DataFrame (l , columns = head)
print(df)
output = df.to_csv (index_label="idx", encoding = "utf-8")
print(output)
accountName = "https://xxxxxx.blob.core.windows.net/"
accountKey = 'xxxxxx'
containerName = "mycontainer"
blobName = "test3.csv"
blobService = BlobClient(account_url=accountName, account_key=accountKey, container_name="mycontainer", blob_name = blobName, output) # <-----HERE IS THE PROBLEM
What am I doing wrong?
Do you have an example that can work with my current version please?
Many thanks in advance.
Regards
i need to know what is happening in my code? it should give data in separate columns it is giving me same data in a oath columns.
i tried to change the value of row variable but it didn't found the reason
import requests
import csv
from bs4 import BeautifulSoup
import pandas as pd
import time
arrayofRequest= []
prices=[]
location=[]
columns=['Price', 'Location']
df = pd.DataFrame(columns=columns)
for i in range(0,50):
arrayofRequest.append("https://www.zameen.com/Homes/Karachi-2-"+str(i+1)+".html?gclid=Cj0KCQjw3JXtBRC8ARIsAEBHg4mj4jX1zZUt3WzGScjH6nfwzrEqkuILarcmg372imSneelSXPj0fGIaArNeEALw_wcB")
request = requests.get(arrayofRequest[i])
soupobj= BeautifulSoup(request.content,"lxml")
# print(soupobj.prettify())
links =soupobj.find_all('span',{'class':'f343d9ce'})
addresses =soupobj.find_all('div',{'class':'_162e6469'})
price = ""
for i in range(0,len(links)):
price = str(links[i]).split(">")
price = price[len(price)-2].split("<")[0]
prices.append(price)
address = str(addresses[i]).split(">")
address = address[len(address)-2].split("<")[0]
location.append(address)
row=location[i]+","+prices[i]
df = df.append(pd.Series(row, index=columns), ignore_index=False)
# filewriter = csv.writer(csvfile, delimiter=',',filewriter.writerow(['Price', 'Location']),filewriter.writerow([prices[0],location[0]])
df.to_csv('DATA.csv', index=False)
because of this:
pd.Series(row, index=columns)
try smthg like
pd.DataFrame([[locations[i], prices[i]]], index=columns))
However this could be done only once outside of your for loop
pd.DataFrame(list(zip(locations, prices)), index=columns))
I am trying to set an ARIMA model to some data, for this, I used 'autocorrelation_plot()' with my time series. It's generates however the error in the title.
I have an attribute table composed, among others, of a Date and time fiels.
I extracted them (after transforming the attribute table into a numpy table), put them in a 'datetime' variable and appended them all in a list:
O,A = [],[]
dt = datetime.strptime(dt1, "%Y/%m/%d %H:%M")
A.append(dt)
I tried then to create time series and printed them to be sure of the results:
data2 = pd.Series(A, O)
print data2
The results were satisfying, until I decided to auto-correlate :
Auto-correlation command :
autocorrelation_plot(data2)
After this command, it returns:
TypeError: ufunc add cannot use operands with types dtype('M8[ns]') and dtype('M8[ns]')
I guess it's due to the conversion of the datetime.strptime to a numpy ?
I tried to follow some suggestions from previous questions
index.to_pydatetime() , dtype, M8[ns] error ..., in vain.
Minimal reproducible example:
from pandas import datetime
from pandas import DataFrame
import pandas as pd
from matplotlib import pyplot as plt
from pandas.tools.plotting import autocorrelation_plot
arr = arcpy.da.TableToNumPyArray(inTable ,("PROVINCE","ZONE_CODE","MEAN", "Datetime","Time"))
arr_length = len(arr)
j = 1
O,A = [],[]
while j<=55: #I have 55 provinces
i = 0
while i<arr_length:
if arr[i][1]== j:
O.append(arr[i][2])
c = str(arr[i][3])
d = str(c[0:4]+"/"+c[5:7]+"/"+c[8:10])
t = str(arr[i][4])
if t=="10":
dt1 = str(d+" 10:00")
else:
dt1 = str(d+" 14:00")
dt = datetime.strptime(dt1, "%Y/%m/%d %H:%M")
A.append(dt)
i = i+1
data2 = pd.Series(A, O)
print data2
autocorrelation_plot(data2)
del A[:]
del O[:]
j += 1
Screenshot of the results:
results
I used this to solve my issue:
import matplotlib.dates as mpl_dates
df.reset_index(inplace=True)
df['Date']=df['Date'].apply(mpl_dates.date2num)
df = df.astype(float)
I found a solution, it can look barbaric, but it works!
I've just "recreated" pd.Series() with the pd.Series I had:
data2 = pd.Series(O, A)
autocorrelation_plot(pd.Series(data2))
plt.show()
I have altimeter satellite data in netCDF4 format.I need to export all the variables present in data to csv format.
I have tried using pandas library.But my code is not working
import netCDF4
import pandas as pd
nc_file = 'F:/data/JASON 3/2016/00 11.11.16/JA3_GPR_2PTP000_166_20160213_230539_20160214_000152.nc'
nc = netCDF4.Dataset(nc_file, mode='r')
#print(nc)
nc.variables.keys()
range_ku=nc.variables['range_ku'][:]
range1=((range_ku*0.001)+1300000.0)
mean_sea_surface=nc.variables['mean_sea_surface'][:]
mean_sea_surf_scaled=(mean_sea_surface*0.0001)
mean_topography=nc.variables['mean_topography'][:]
mean_topo_scaled=(mean_topography*0.0001)
model_dry_tropo_corr=nc.variables['model_dry_tropo_corr'][:]
topo_cr=(model_dry_tropo_corr*0.0001)
rad_wet_tropo_corr=nc.variables['rad_wet_tropo_corr'][:]
wet_topo_cr=(rad_wet_tropo_corr*0.0001)
iono_corr_alt_ku=nc.variables['iono_corr_alt_ku'][:]
iono_cr=(iono_corr_alt_ku*0.0001)
sea_state_bias_ku=nc.variables['sea_state_bias_ku'][:]
sea_state_bias_cr=(sea_state_bias_ku*0.0001)
lat = nc.variables['lat'][:]
lon = nc.variables['lon'][:]
time_var = nc.variables['time']
dtime = netCDF4.num2date(time_var[:],time_var.units)
ssha= nc.variables['ssha'][:]
ssha1=(ssha*0.001)
alt = nc.variables['alt'][:]
alt1=((alt*0.001)+1300000.0)
print(dtime)
print(lat)
print(lon)
print(alt1)
print(range1)
print(mean_sea_surface)
print(mean_topography)
print(model_dry_tropo_corr)
print(rad_wet_tropo_corr)
print(iono_corr_alt_ku)
print(sea_state_bias_ku)
nc_ts = pd.Series(lat, lon,alt1,range1,mean_sea_surface,mean_topography,model_dry_tropo_corr,rad_wet_tropo_corr,iono_corr_alt_ku,sea_state_bias_ku,dtime)
nc_ts.to_csv('data.csv',index=False, header=True)
File "F:/untitled3.py", line 50, in <module>
nc_ts = pd.Series(lat, lon,alt1,range1,mean_sea_surface,mean_topography,model_dry_tropo_corr,rad_wet_tropo_corr,iono_corr_alt_ku,sea_state_bias_ku,dtime)
TypeError: __init__() takes from 1 to 7 positional arguments but 12 were given
I have asked the related question of string in: Find the number of \n before a given word in a long string. But this method cannot solve the complicate case I happened to. Thus I want to find out a solution of Pandas here.
I have a csv file (I just represent as a string):
csvfile = 'Idnum\tId\nkey:maturity\n2\nmaturity\tpara1\tpara2\n1Y\t0\t0\n2Y\t0\t0'
I want to use the pandas:
value = pandas.read_csv(csvfile, sep = '\t', skiprows = 3).set_index('maturity')
to obtain the table like:
and set the first columan maturity as index.
But there are several uncertain factors in the csvfile:
1..set_index('maturity'), the key maturity
of index is included in the row key: maturity. Then I should find the row key: xxxx and obtain the string xxxx
2.skiprows = 3: the number of skipped rows before the title:
is uncertain. The csvfile can be something like:
'Idnum\tId\nkey:maturity\n2\n\n\n\n\n\nmaturity\tpara1\tpara2\n1Y\t0\t0\n2Y\t0\t0'
I should find the row number of title (namely the row beginning with xxxx found in the rowkey: xxxx).
3.sep = '\t': the csvfile may use space as separator like:
csvfile = 'Idnum Id\nkey: maturity\n2\nmaturity para1 para2\n1Y 0 0\n2Y 0 0'
So is there any general code of pandas to deal with the csvfile with above uncertain factors?
Actually the string:
csvfile = 'Idnum\tId\nkey:maturity\n2\nmaturity\tpara1\tpara2\n1Y\t0\t0\n2Y\t0\t0'
is from a StringIO: data
data.getvalue() = 'Idnum\tId\nkey:maturity\n2\nmaturity\tpara1\tpara2\n1Y\t0\t0\n2Y\t0\t0'
I am not familiar with this structure and even I want to obtain a table of original data without any edition by using:
value = pandas.read_csv(data, sep = '\t')
There will be a error.
You can read the file line by line, collecting the necessary information and then pass the remainder to pd.read_csv with the appropriate arguments:
from io import StringIO
import re
import pandas as pd
with open('data.csv') as fh:
key = next(filter(lambda x: x.startswith('key:'), fh)).lstrip('key:').strip()
header = re.split('[ \t]+', next(filter(lambda x: x.startswith(key), fh)).strip())
df = pd.read_csv(StringIO(fh.read()), header=None, names=header, index_col=0, sep=r'\s+')
Example for data via StringIO:
fh = StringIO('Idnum\tId\nkey:maturity\n2\nmaturity\tpara1\tpara2\n1Y\t0\t0\n2Y\t0\t0')
key = next(filter(lambda x: x.startswith('key:'), fh)).lstrip('key:').strip()
header = re.split('[ \t]+', next(filter(lambda x: x.startswith(key), fh)).strip())
df = pd.read_csv(fh, header=None, names=header, index_col=0, sep=r'\s+')
If you do not mind reading the csv file twice you can try doing something like:
from io import StringIO
csvfile = 'Idnum\tId\nkey:maturity\n2\nmaturity\tpara1\tpara2\n1Y\t0\t0\n2Y\t0\t0'
data = pd.read_csv(StringIO(csvfile), sep='\t', error_bad_lines=False, header=None)
skiprows = len(data)
pd.read_csv(StringIO(csvfile), sep='\t', skiprows=skiprows)
same for you other example:
csvfile = 'Idnum\tId\nkey:maturity\n2\n\n\n\n\n\nmaturity\tpara1\tpara2\n1Y\t0\t0\n2Y\t0\t0'
data = pd.read_csv(StringIO(csvfile), sep='\t', error_bad_lines=False, header=None)
skiprows = len(data)
pd.read_csv(StringIO(csvfile), sep='\t', skiprows=skiprows)
This assumes that you know the sep of the file
Also if you want to find the key:
csvfile = 'Idnum\tId\nkey:maturity\n2\n\n\n\n\n\nmaturity\tpara1\tpara2\n1Y\t0\t0\n2Y\t0\t0'
data = pd.read_csv(StringIO(csvfile), sep='\t', error_bad_lines=False, header=None)
key = [x.replace('key:','') for x in data[0] if x.find('key')>-1]
skiprows = len(data)
pd.read_csv(StringIO(csvfile), sep='\t', skiprows=skiprows).set_index(key)