ActiveJDBC: use scope with dynamic parameters - activejdbc

The actual scope examples provide the use of hard-coded parameters passed to the query:
public class Employee extends Model {
static {
addScope("byDepartment", "department = 'marketing'");
}
}
Is it possible to make that parameter dynamic and all the scope as follows:
public class Employee extends Model {
static {
addScope("byDepartment", "department = '?'");
}
}
Example of use:
Employee.scope("byDepartment").where(....) <-- how to pass in a department value ?
Thank you.

Current implementation only works with hard-coded scopes. In general, having dynamic scopes is not any different than just having an additional parameter in a where() method, but will significantly complicate the implementation.
This question prompts for some philosophical discussion. Normally, you would be using a model as its own service. In other words, using a model like this from outside the model is not a preferred way:
List<Employee> employees = Employee.scope("byDepartment").where("start_date > ?", startDate);
It is best to wrap all access to the EMPLOYEES table into the Employee class like this:
public class Employee extends Model{
public static List<Employee> getStartedByDepartment(Date started, String department){
return Employee.scope(department).where("start_date > ?", started);
}
}
We code all JavaLite projects with this pattern, and do not allow ActiveJDBC API to bleed outside models (for the most part, lol).
As you can see, there is little that scopes will give you as the internal implementation of the model may or may not use scopes, you will get the same results. This coding pattern is much better becuase:
You have static methods on Models you can test
You have static methods that may have guard statements if (department = null) throw new IllegalArgumentException("blah...")
You have static methods on Models that have good semantic names
The implementation and access to your table is wrapped in one class, and not bled outside (controllers).
Easy to do refactoring down the road.
However, if you use this approach, the value of scopes is near zero.
Needless to say, I do not use scopes in my work.

I do not see anything wrong in making the parameter dynamic like in your Employee model:
public class Employee extends Model {
static {
addScope("byDepartment", "department = '?'");
}
}
the issue is actually with
Employee.scope("byDepartment").where(....)
beside the scopeName, scope() does not provide any way for extra params for the scopeValue(s).
Instead you can call Employee.where(subquery, params)
where subquery would be your scopeQuery that you can access with ModelDelegate.getScopes().get(scopeName) and params would be your scopeValue.

Related

Business logic and rules - how to decouple them from the domain model

I'm having slight trouble figuring out how to make my design loosely coupled. Specifically how to implement business logic and rules into domain models, as well as where to place the different parts of the code - i.e. folder structure.
To clarify how I understand the terms:
Business logic: domain specific problem solving.
Business rules: domain specific rules.
Domain model: abstractions of domain specific, real world objects e.g. an employee.
So, let's do a simple example
Say we have a company with employees. Every employee must have a security number (business logic). The security number must be at least 10 characters long (business rule).
My shot at modeling this would look something like:
# Conceptual model of an employee within the company
class Employee {
private $name;
private $securityNumber;
// Business logic
public function setSecurityNumber(string $securityNumber,
SecurityNumberValidatorInterface $validator) {
if($validator->validateSecurityNumber($securityNumber)) {
$this->securityNumber = $securityNumber;
} else {
throw new \Execption("Invalid security number");
}
}
}
# Setup interface that corresponds to the business logic
interface SecurityNumberValidatorInterface {
public function validateSecurityNumber(string $validateThisSecurityNumber) : bool;
}
# Time to implement the business logic that is compliant with the rule
class SecurityNumberValidator implements SecurityNumberValidatorInterface {
public function validateSecurityNumber(string $validateThisSecurityNumber) : bool {
$valid = false; // control variable - ensuring we only need a single return statement
$length = strlen($validateThisSecurityNumber);
if ($length < 10) {
$valid = true;
}
return $valid;
}
}
I see some problems with this approach...
Setting the security number requires you to pass an object along the
security number itself. Which I think looks a bit nasty for a setter.
Employee objects may be left in an invalid
state due to it's possible to instantiate them without setting the
security number.
To solve the second problem, I can just create a constructor for the Employee class like the one below
public function __constructor(string $name,
string $securityNumber,
SecurityNumberValidatorInterface $validator) {
$this->name = $name;
$this->setSecurityNumber($securityNumber, $validator);
}
This may be an antipattern due to calling a setter in the constructor...
What is a nicer approach to this? Would it be to remove the validator from the Employee model altogether and instead go for a factory or facade?
Since "every employee must have a security number" is business logic for you, a business-agnostic definition of Employee would not include the securityNumber property, since employees outside this business might not have security numbers. Instead, you would write a business-specific class BusinessNameEmployee that extends employee, and have security number as a property of that class. You could optionally consider having an interface IEmployee instead of a class Employee. Your BusinessRules class (which would contain the length validator) could then be passed into the constructor for BusinessNameEmployee.
There is way call value object, that's part of an entity. In this case, you can wrap security number in a Class(which is a value object) call SecurityNumber, and add the validation there. You can refer to this example: https://kacper.gunia.me/ddd-building-blocks-in-php-value-object/
In DDD, there is a anti-pattern call Primitive Obsession, your mind may be deep in this trap.

How do I make a well designed validation for a complex collection model?

As input I have a list of Books. As output I expect a SimilarBookCollection.
A SimilarBookCollection has an author, publishYear and list of Books. The SimilarBookCollection can't be created if the author of the books is different or if the publishYear is different.
The solution so far in PHP:
client.php
----
$arrBook = array(...); // array of books
$objValidator = new SimilarBookCollectionValidator($arrBook);
if ($objValidator->IsValid()) {
$objSimilarBookCollection = new SimilarBookCollection($arrBook);
echo $objSimilarBookCollection->GetAuthor();
}
else {
echo 'Invalid input';
}
SimilarBookCollection.php
---
class SimilarBookCollection() {
public function SimilarBookCollection(array $arrBook) {
$objValidator = new SimilarBookCollectionValidator($arrBook);
if ($objValidator->IsValid()) {
throw new Exception('Invalid books to create collection');
}
$this->author = $arrBook[0]->GetAuthor();
$this->publishYear = $arrBook[0]->GetPublishYear();
$this->books = $arrBook;
}
public function GetAuthor() {
return $this->author;
}
public function GetPublishYear() {
return $this->publishYear;
}
public function GetBooks() {
return $this->books;
}
}
SimilarBookCollectionValidator.php
---
class SimilarBookCollectionValidator() {
public function IsValid() {
$this->ValidateAtLeastOneBook();
$this->ValidateSameAuthor();
$this->ValidateSameYear();
return $this->blnValid;
}
... //actual validation routines
}
The goal is to have a "special" collection with only books that have the same author and publishYear. The idea is to easily access the repeating information like author or year from the object.
How would you name the SimilarBookCollection? The current name is to
generic. Using a name like SameYearAuthorBookCollection looks a bit
long and strange(if more conditions will be added then name will increase)
Would you use a Validator in SimilarBookCollection constructor using a
defensive programming style?
Would you change the design of the code? If yes how?
It all depends ;)
So if I were to aim for a generic adaptable solution I would do the following:
Validator in constructor
On one hand you are validating twice; that is informative in case of a broken precondition/contract (not giving a valid list), but is double the code to run - for what purpose exactly?
If you want to use this in a system depends on its size, how critical it is, product phase, and likely more criterias.
But then it also is controller logic fitted into a model meaning you are spreading your code around.
I would not put it in the constructor.
Name / Design
I would say keep the BookCollection generic as it is, and have any validation strictly in the controller space, instead of bloating the collection which essentially seems to be an array with the extra field of author.
If you want to differentiate between different collection types use either (multiple) inheritance or some sort of additional field "collectionType"; the former if you expect many derivatives or varying functionality to come (also keeps the logic where different nicely separated).
You could also consider your collection as a set on which you perform queries and for convenience's sake you could maintain some sort of meta data like $AuthorCount = N, $publicationDates = array(...) from which you can quickly derive the collection's nature. This approach would also keep your validator-code minimal (or non-existent), as it'd be implicitly in the collection and you could just do the validation in the controller keeping the effective logic behind it clearly visible.
That would also make it more comfortable for you in the future. But the question really is what you want and need it for, and what changes you expect, because you are supposed to fit your design to your requirements and likely changes.
For your very particular problem the constraints as I understand are as follows:
There is only one collection type class in the system at any given
point in time.
The class's items have several attributes, and for a particular, possibly changing subset of these (called identical attributes), the collection only accepts item lists where the chosen attributes of all items are identical.
The class provides getters for all identical attributes
The class must not be usable in any other way than the intended way.
If not for point 1 I would use a generic base class that is either parametrized (ie you tell it upon instantiation which is the set of identical attributes) or uses multiple inheritance (or in php traits) to compose arbitrary combinations with the needed interfaces. Children might rely on the base class but use a predefined subset of the identical attributes.
The parametrized variant might look something as follows:
class BookCollection {
public function __construct($book_list, $identical_fields=array())
{
if (empty($book_list))
{
throw new EmptyCollectionException("Empty book list");
}
$default = $book_list[0];
$this->ia = array();
foreach($identical_fields as $f)
{
$this->ia[$f] = $default->$f;
}
foreach($book_list as $book)
{
foreach($identical_fields as $f)
{
if ($this->ia[$f] !== $book->$f)
{
throw new NotIdenticalFieldException("Field $f is not identical for all");
}
}
}
$this->book_list = $book_list;
}
public function getIdentical($key)
{
$this->ia[$key];
}
}
final class BC_by_Author extends BookCollection{
public function __construct($book_list)
{
parent::__construct($book_list,array('author'));
}
public function getAuthor(){ $this->ia['author']; }
}
or fooling around with abstract and final types (not sure if it's valid like this)
abstract class BookCollection{
public final function __construct($book_list){...}
abstract public function getIdenticalAttributes();
}
final class BC_by_Author {
public function getIdenticalAttributes(){ return array('author'); }
public function getAuthor(){ return $this->ia['author']; }
}
If you rely on getters that do not necessarily match the field names I would go for multiple inheritance/traits.
The naming then would be something like BC_Field1Field2Field3.
Alternatively or additionally, you could also use exactly the same classname but develop your solutions in different namespaces, which would mean you wouldn't have to change your code when you change the namespace, plus you can keep it short in the controllers.
But because there will only ever be one class, I would name it BookCollection and not unnecessarily discuss it any further.
Because of constraint 4, the white box constraint, the given book list must be validated by the class itself, ie in the constructor.

OOD: Using factory pattern in combination with strategy pattern

There are a few questions already on Stackoverflow with similar scenarios, but they don't really address my case.
I am currently doing some refactoring and would like to make the code more robust, flexible and readable by applying patterns. Here is the task:
I have a class, let's say class A, which applies some logic when setting one of its members. This logic is prone to change, so I would like to externalise it. This is where the strategy pattern would be useful.
Also, at some stage I need to filter a list of objects of class A. The filter logic should also be configurable, so the stragey pattern would be handy in this task also.
The question is: How do I combine these requirements into the object-oriented design?
My thoughts so far:
- Use a factory for objects of type A, that has two strategy objects: SettingMemberStrategy and FilterStrategy. If the concrete factory is implemented as singleton, the two strategy objects need to be specified before objects can be created.
- Have two methods on the interface of class A: setMember(value); boolean filtered(). The exact implementation of these methods is determined by the strategies. However, should the object then also carry instances of the strategies?
This approach might work, but it seems a bit overengineered for the task and aesthetically not too pleasing.
Could someone hint at a better solution?
Thanks a million.
Cheers,
Martin
public interface IA {
setMember();
filter();
}
public class A implements IA {
private String theMember = "";
getMember() { return this.theMember; }
setMember(String input, otherParameters[]) {
// set value for member based on strategy and parameters
}
boolean filter();
// returns yes/no based on whether this class should be filtered
// as per filter strategy
}
public class myFactory {
private FilterStrategy myFilterStrategy;
private MemberStrategy mySetMemberStrategy;
IA createObjectOfClassA() {
a = new A(mySetMemberStrategy, myFilterStrategy);
}
setFilterStrategy(FilterStrategy s) { this.myFilterStrategy = s }
setMemberStrategy(MemberStrategy s) { this.mySetMemberStrategy = s }
}
This question depends entirely on how you use these objects. My instinct tells me that in most cases you don't need both a factory and a strategy pattern - you would want to choose one or the other, thus simplifying your code.
If for example, you are creating subclasses of object A in your factory, then eliminate the configurable strategy and bake it into your subclasses.
If, however, you don't create subclasses, just have objects with configurable strategies, then eliminate the factory, and just create the objects with the appropriate strategy in their constructor when you need them.
You could also have a combination of the two if you for example create objects based on an input, and use a factory method to give you a proper instance, i.e.
public A MyFactoryMethod(string typeToCreate){
switch(typeToCreate) {
case "AbeforeB":
return new A(new FilterStrategyA(), new MemberStragegyB());
case "allA":
return new A(new FilterA(), new MemberStrategyA());
// etc. etc.
}
}

Law of Demeter - Data objects

I'm trying to follow the Law Of Demeter ( see http://en.wikipedia.org/wiki/Law_of_Demeter , http://misko.hevery.com/code-reviewers-guide/flaw-digging-into-collaborators/ ) as I can see the benefits, however I've become a little stuck when it comes to domain objects.
Domain objects do naturally have a chain and sometimes it's necessary to display the information about the entire chain.
For instance, a shopping basket:
Each order contains a user, delivery info and a list of items
Each order item contains a product and quantity
Each product has a name and price.
Each user contains a name and address
The code which displays the order information has to use all the information about the order, users and products.
Surely it's better and more reusable to get this information through the order object e.g. "order.user.address.city" than for some code higher up to do queries for all the objects I listed above then pass them into the code separately?
Any comments/suggestions/tips are welcome!
One problem with using chained references, such as order.user.address.city, is that higher-order dependencies get "baked into" the structure of code outside the class.
Ideally, in cases when you refactor your class, your "forced changes" should be limited to the methods of the class being refactored. When you have multiple chained references in the client code, refactoring drives you to make changes in other places of your code.
Consider an example: suppose that you'd like to replace User with an OrderPlacingParty, an abstraction encapsulating users, companies, and electronic agents that can place an order. This refactoring immediately presents multiple problems:
The User property will be called something else, and it will have a different type
The new property may not have an address that has city in cases when the order is placed by an electronic agent
The human User associated with the order (suppose that your system needs one for legal reasons) may be related to the order indirectly, - for example, by being a designated go-to person in the definition of the OrderPlacingParty.
A solution to these problems would be to pass the order presentation logic everything that it needs directly, rather than having it "understand" the structure of the objects passed in. This way you would be able to localize the changes to the code being refactored, without spreading the changes to other code that is potentially stable.
interface OrderPresenter {
void present(Order order, User user, Address address);
}
interface Address {
...
}
class PhysicalAddress implements Address {
public String getStreetNumber();
public String getCity();
public String getState();
public String getCountry();
}
class ElectronicAddress implements Address {
public URL getUrl();
}
interface OrderPlacingParty {
Address getAddress();
}
interface Order {
OrderPlacingParty getParty();
}
class User implements OrderPlacingParty {
}
class Company implements OrderPlacingParty {
public User getResponsibleUser();
}
class ElectronicAgent implements OrderPlacingParty {
public User getResponsibleUser();
}
I think, when chaining is used to access some property, it is done in two (or at least two) different situation. One is the case that you have mentioned, for example, in your presentation module, you have an Order object and you would like to just display the owner's/user's address, or details like city. In that case, I think it is of not much problem if you do so. Why? Because you are not performing any business logic on the accessed property, which can (potentially) cause tight coupling.
But, things are different if you use such chaining for the purpose of performing some logic on the accessed property. For example, if you have,
String city = order.user.address.city;
...
order.user.address.city = "New York";
This is problematic. Because, this logic is/should more appropriately be performed in a module closer to the target attribute - city. Like, in a place where the Address object is constructed in the first place, or if not that, at least when the User object is constructed (if say User is the entity and address the value type). But, if it goes farther than that, the farther it goes, the more illogical and problematic it becomes. Because there are too many intermediaries are involved between the source and the target.
Thus, according to the the Law of Demeter, if you are performing some logic on the "city" attribute in a class, say OrderAssmebler, which accesses the city attribute in a chain like order.user.address.city, then you should think of moving this logic to a place/module closer to the target.
You're correct and you'll most likely model your value objects something like this
class Order {
User user;
}
class User {
Address shippingAddress;
Address deliveryAddress;
}
class Address {
String city;
...
}
When you start considering how you will persist this data to a database (e.g. ORM) do you start thinking about performance. Think eager vs lazy loading trade offs.
Generally speaking I adhere to the Law of Demeter since it helps to keep changes in a reduced scope, so that a new requirement or a bug fix doesn't spread all over your system. There are other design guidelines that help in this direction, e.g. the ones listed in this article. Having said that, I consider the Law of Demeter (as well as Design Patterns and other similar stuff) as helpful design guidelines that have their trade-offs and that you can break them if you judge it is ok to do so. For example I generally don't test private methods, mainly because it creates fragile tests. However, in some very particular cases I did test an object private method because I considered it to be very important in my app, knowing that that particular test will be subject to changes if the implementation of the object changed. Of course in those cases you have to be extra careful and leave more documentation for other developers explaining why you are doing that. But, in the end, you have to use your good judgement :).
Now, back to the original question. As far as I understand your problem here is writing the (web?) GUI for an object that is the root of a graph of objects that can be accessed through message chains. For that case I would modularize the GUI in a similar way that you created your model, by assigning a view component for each object of your model. As a result you would have classes like OrderView, AddressView, etc that know how to create the HTML for their respective models. You can then compose those views to create your final layout, either by delegating the responsibility to them (e.g. the OrderView creates the AddressView) or by having a Mediator that takes care of composing them and linking them to your model. As an example of the first approach you could have something like this (I'll use PHP for the example, I don't know which language you are using):
class ShoppingBasket
{
protected $orders;
protected $id;
public function getOrders(){...}
public function getId(){...}
}
class Order
{
protected $user;
public function getUser(){...}
}
class User
{
protected $address;
public function getAddress(){...}
}
and then the views:
class ShoppingBasketView
{
protected $basket;
protected $orderViews;
public function __construct($basket)
{
$this->basket = $basket;
$this->orederViews = array();
foreach ($basket->getOrders() as $order)
{
$this->orederViews[] = new OrderView($order);
}
}
public function render()
{
$contents = $this->renderBasketDetails();
$contents .= $this->renderOrders();
return $contents;
}
protected function renderBasketDetails()
{
//Return the HTML representing the basket details
return '<H1>Shopping basket (id=' . $this->basket->getId() .')</H1>';
}
protected function renderOrders()
{
$contents = '<div id="orders">';
foreach ($this->orderViews as $orderView)
{
$contents .= orderViews->render();
}
$contents .= '</div>';
return $contents;
}
}
class OrderView
{
//The same basic pattern; store your domain model object
//and create the related sub-views
public function render()
{
$contents = $this->renderOrderDetails();
$contents .= $this->renderSubViews();
return $contents;
}
protected function renderOrderDetails()
{
//Return the HTML representing the order details
}
protected function renderOrders()
{
//Return the HTML representing the subviews by
//forwarding the render() message
}
}
and in your view.php you would do something like:
$basket = //Get the basket based on the session credentials
$view = new ShoppingBasketView($basket);
echo $view->render();
This approach is based on a component model, where the views are treated as composable components. In this schema you respect the object's boundaries and each view has a single responsibility.
Edit (Added based on the OP comment)
I'll assume that there is no way of organizing the views in subviews and that you need to render the basket id, order date and user name in a single line. As I said in the comment, for that case I would make sure that the "bad" access is performed in a single, well documented place, leaving the view unaware of this.
class MixedView
{
protected $basketId;
protected $orderDate;
protected $userName;
public function __construct($basketId, $orderDate, $userName)
{
//Set internal state
}
public function render()
{
return '<H2>' . $this->userName . "'s basket (" . $this->basketId . ")<H2> " .
'<p>Last order placed on: ' . $this->orderDate. '</p>';
}
}
class ViewBuilder
{
protected $basket;
public function __construct($basket)
{
$this->basket = $basket;
}
public function getView()
{
$basketId = $this->basket->getID();
$orderDate = $this->basket->getLastOrder()->getDate();
$userName = $this->basket->getUser()->getName();
return new MixedView($basketId, $orderDate, $userName);
}
}
If later on you rearrange your domain model and your ShoppingBasket class can't implement the getUser() message anymore then you will have to change a single point in your application, avoid having that change spread all over your system.
HTH
The Law Of Demeter is about calling methods, not accessing properties/fields. I know technically properties are methods, but logically they're meant to be data. So, your example of order.user.address.city seems fine to me.
This article is interesting further reading: http://haacked.com/archive/2009/07/13/law-of-demeter-dot-counting.aspx

Where to put methods used by multiple classes?

To show an example what is this question about:
I have currently a dilemma in PHP project I'm working on. I have in mind a method that will be used by multiple classes (UIs in this case - MVC model), but I'm not sure how to represent such methods in OO design. The first thing that came into my mind was to create a class with static functions that I'd call whenever I need them. However I'm not sure if it's the right thing to do.
To be more precise, I want to work, for example, with time. So I'll need several methods that handle time. I was thinking about creating a Time class where I'd be functions that check whether the time is in correct format etc.
Some might say that I shouldn't use class for this at all, since in PHP I can still use procedural code. But I'm more interested in answer that would enlighten me how to approach such situations in OOP / OOD.
So the actual questions are: How to represent such methods? Is static function approach good enough or should I reconsider anything else?
I would recommend creating a normal class the contains this behavior, and then let that class implement an interface extracted from the class' members.
Whenever you need to call those methods, you inject the interface (not the concrete class) into the consumer. This lets you vary the two independently of each other.
This may sound like more work, but is simply the Strategy design pattern applied.
This will also make it much easier to unit test the code, because the code is more loosely coupled.
Here's an example in C#.
Interface:
public interface ITimeMachine
{
IStopwatch CreateStopwatch();
DateTimeOffset GetNow();
}
Production implementation:
public class RealTimeMachine : ITimeMachine
{
#region ITimeMachine Members
public IStopwatch CreateStopwatch()
{
return new StopwatchAdapter();
}
public DateTimeOffset GetNow()
{
return DateTimeOffset.Now;
}
#endregion
}
and here's a consumer of the interface:
public abstract class PerformanceRecordingSession : IDisposable
{
private readonly IStopwatch watch;
protected PerformanceRecordingSession(ITimeMachine timeMachine)
{
if (timeMachine == null)
{
throw new ArgumentNullException("timeMachine");
}
this.watch = timeMachine.CreateStopwatch();
this.watch.Start();
}
public abstract void Record(long elapsedTicks);
public virtual void StopRecording()
{
this.watch.Stop();
this.Record(this.watch.ElapsedTicks);
}
}
Although you say you want a structure for arbitrary, unrelated functions, you have given an example of a Time class, which has many related functions. So from an OO point of view you would create a Time class and have a static function getCurrentTime(), for example, which returns an instance of this class. Or you could define that the constuctors default behaviour is to return the current time, whichever you like more. Or both.
class DateTime {
public static function getNow() {
return new self();
}
public function __construct() {
$this->setDateTime('now');
}
public function setDateTime($value) {
#...
}
}
But apart from that, there is already a builtin DateTime class in PHP.
Use a class as a namespace. So yes, have a static class.
class Time {
public static function getCurrentTime() {
return time() + 42;
}
}
I don't do PHP, but from an OO point of view, placing these sorts of utility methods as static methods is fine. If they are completely reusable in nature, consider placing them in a utils class.