Scale Bezier Curve - shapes

I need to adjust the length of a (cubic) Bezier curve to match that of another one, without disturbing its overall shape. This involves, I guess, proportionately scaling it recursively until the length is of the right magnitude (or is there any better approach?).
I have got the function that calculates the length. For scaling, I am stuck at calculating the coordinates of the new control points. There is this question that seems to have the answer but I am unable to figure out to what the variables a, b etc. refer in the answer. Also, I need to write a function from scratch, without having recourse to any API library (except python math).
Any help is appreciated.

Denoting the length of your curve by L and the desired length D, it seems to me that you just need to scale your curve (D/L)-times. Thanks to affine invariance, it should be enough to scale all your control points. That is, multiply each coordinate of each of your control points by D/L.
Or did I miss something?

Related

CGAL 3D surface mesh generation for unbounded implicit surfaces

This is again a question about the CGAL 3D surface mesher.
http://doc.cgal.org/latest/Surface_mesher/index.html#Chapter_3D_Surface_Mesh_Generation
With the definition
Surface_3 surface(sphere_function, // pointer to function
Sphere_3(CGAL::ORIGIN, 64.0)); // bounding sphere
(as given too in the example code) I define an implicit surface given by 'sphere function' and a Sphere_3 of radius 8.
The difference is now, that the zeros of 'sphere function' are (contrary to its now misleading name) no longer bounded and inside Sphere_3. Instead 'sphere_function' represents an unbounded surface (think of x^2 + y^2 - z^2 - 1 = 0) and my intention is to triangularize its part that is in the Sphere_3.
In my examples up to now this worked quite well, if only for some annoying problem, I do not know how to overcome: The boundaries, where the implicit surface meets the Sphere, are very "rough" or "jagged" in a more than acceptable amount.
I already tried the 'Manifold_with_boundary_tag()', but it gave no improvements.
One road to improve the output that I am contemplating, is converting the triangulated mesh (a C2t3) into a Polyhedron_3 and this in a Nef_polyhedron and intersect that with a Nef_polyhedron well approximating a slightly smaller Sphere. But this seems a bit like shooting with cannons for sparrows, nevertheless I have currently no better idea and googling gave me also no hint. So my question: What to do about this problem? Can it be done with CGAL (and moderate programming effort) or is it necessary or better to use another system?
(Just for explanation for what I need this: I try to develop a program that constructs 3D-printable models of algebraic surfaces and having a smooth and also in the boundaries smooth triangulation is my last step that is missing before I can hand the surface over to OpenSCAD to generate a solid body of constant thickness).
The only solution I see is to use the 3D Mesh Generation with sharp feature preservation and no criteria on the cells. You will have to provide the intersection of the bounding sphere with the surface yourself.
There is one example with two intersecting spheres in the user manual.

Tweaking Heightmap Generation For Hexagon Grids

Currently I'm working on a little project just for a bit of fun. It is a C++, WinAPI application using OpenGL.
I hope it will turn into a RTS Game played on a hexagon grid and when I get the basic game engine done, I have plans to expand it further.
At the moment my application consists of a VBO that holds vertex and heightmap information. The heightmap is generated using a midpoint displacement algorithm (diamond-square).
In order to implement a hexagon grid I went with the idea explained here. It shifts down odd rows of a normal grid to allow relatively easy rendering of hexagons without too many further complications (I hope).
After a few days it is beginning to come together and I've added mouse picking, which is implemented by rendering each hex in the grid in a unique colour, and then sampling a given mouse position within this FBO to identify the ID of the selected cell (visible in the top right of the screenshot below).
In the next stage of my project I would like to look at generating more 'playable' terrains. To me this means that the shape of each hexagon should be more regular than those seen in the image above.
So finally coming to my point, is there:
A way of smoothing or adjusting the vertices in my current method
that would bring all point of a hexagon onto one plane (coplanar).
EDIT:
For anyone looking for information on how to make points coplanar here is a great explination.
A better approach to procedural terrain generation that would allow
for better control of this sort of thing.
A way to represent my vertex information in a different way that allows for this.
To be clear, I am not trying to achieve a flat hex grid with raised edges or platforms (as seen below).
)
I would like all the geometry to join and lead into the next bit.
I'm hope to achieve something similar to what I have now (relatively nice undulating hills & terrain) but with more controllable plateaus. This gives me the flexibility of cording off areas (unplayable tiles) later on, where I can add higher detail meshes if needed.
Any feedback is welcome, I'm using this as a learning exercise so please - all comments welcome!
It depends on what you actually want and what you mean by "more controlled".
Do you want to be able to say "there will be a mountain on coordinates [11, -127] with radius 20"? Complexity of this this depends on how far you want to go. If you want just mountains, then radial gradients are enough (just add the gradient values to the noise values). But if you want some more complex shapes, you are in for a treat.
I explore this idea to great depth in my project (please consider that the published version is just a prototype, which is currently undergoing major redesign, it is completely usable a map generator though).
Another way is to make the generation much more procedural - you just specify a sequence of mathematical functions, which you apply on the terrain. Even a simple value transformation can get you very far.
All of these methods should work just fine for hex grid. If artefacts occur because of the odd-row shift, then you could interpolate the odd rows instead (just calculate the height value for the vertex from the two vertices between which it is located with simple linear interpolation formula).
Consider a function, which maps the purple line into the blue curve - it emphasizes lower located heights as well as very high located heights, but makes the transition between them steeper (this example is just a cosine function, making the curve less smooth would make the transformation more prominent).
You could also only use bottom half of the curve, making peaks sharper and lower located areas flatter (thus more playable).
"sharpness" of the curve can be easily modulated with power (making the effect much more dramatic) or square root (decreasing the effect).
Implementation of this is actually extremely simple (especially if you use the cosine function) - just apply the function on each pixel in the map. If the function isn't so mathematically trivial, lookup tables work just fine (with cubic interpolation between the table values, linear interpolation creates artefacts).
Several more simple methods of "gamification" of random noise terrain can be found in this paper: "Realtime Synthesis of Eroded Fractal Terrain for Use in Computer Games".
Good luck with your project

transform a path along an arc

Im trying to transform a path along an arc.
My project is running on osX 10.8.2 and the painting is done via CoreAnimation in CALayers.
There is a waveform in my project which will be painted by a path. There are about 200 sample points which are mirrored to the bottom side. These are painted 60 times per second and updated to a song postion.
Please ignore the white line, it is just a rotation indicator.
What i am trying to achieve is drawing a waveform along an arc. "Up" should point to the middle. It does not need to go all the way around. The waveform should be painted along the green circle. Please take a look at the sketch provided below.
Im not sure how to achieve this in a performant manner. There are many points per second that need coordinate correction.
I tried coming up with some ideas of my own:
1) There is the possibility to add linear transformations to paths, which, i think, will not help me here. The only thing i can think of is adding a point, rotating the path with a transformation, adding another point, rotating and so on. But this would be very slow i think
2) Drawing the path into an image and bending it would surely lead to image-artifacts.
3) Maybe the best idea would be to precompute sample points on an arc, then save save a vector to the center. Taking the y-coordinates of the waveform, placing them on the sample points and moving them along the vector to the center.
But maybe i am just not seeing some kind of easy solution to this problem. Help is really appreciated and fresh ideas very welcome. Thank you in advance!
IMHO, the most efficient way to go (in terms of CPU usage) would be to use some form of pre-computed approach that would take into account the resolution of the display.
Cleverly precomputed values
I would go for the mathematical transformation (from linear to polar) and combine two facts:
There is no need to perform expansive mathematical computation
There is no need to render two points that are too close from each other
I have no ready-made algorithm for you, but you could use a pre-computed sin or cos table, and match the data range to the display size in order to work with integers.
For instance imagine we have some data ranging from 0 to 1E6 and we need to display the sin value of each point in a 100 pix height rectangle. We can use a pre-computed sin table and work with integers. This way displaying the sin value of a point would be much quicker. This concept can be refined to get a nicer result.
Also, there are some ways to retain only significant points of a curve so that the displayed curve actually looks like the original (see the Ramer–Douglas–Peucker algorithm on wikipedia). But I found it to be inefficient for quickly displaying ever-changing data.
Using multicore rendering
You could compute different areas of the curve using multiple cores (can be tricky)
Or you could use pre-computing using several cores, and one core to do finish the job.

How to generate isolines (contour lines) at specific values from irregular data?

I have an array of sample points with their (X, Y, Z) coordinates. I use Delaunay Triangulation to generate an irregular network from them and then I use linear interpolation to plot contour lines at fixed values (e.g. 90, 95, 100, 105). The problem is that I need smooth contour lines to be generated with another algorithm. I've searched for some time now and found out that I need to use something like Kriging but I'm not that good at math to implement the algorithm from pure mathematical relations. Also I can't seem to find an implementation or explanation of the algorithm anywhere. Can anyone help me find one? Also, am I right with the chosen algorithm? Is there another one that can be easier to implement? Note that I don't care about precision.
https://dl.dropbox.com/u/15926260/ex.png
P.S. I've done a plot in Surfer showing the results that I'm looking for. On the right side is what I have done using triangulation and linear interpolation and on the left side is what I need to plot using a different algorithm (Kriging was used in Surfer).
Sorry for the spelling mistakes but I'm not a native language speaker.
Thank you!
You can try a regular (weighted) delaunay triangulation. In weighted delaunay triangulation triangle areas are more equal. IMO the kriging algorithm seems also to produce more equally contours. Weighted delaunay triangulation is also used to make smoother meshes.

Best fixed rectangular area fit over points

I'm using Google Maps and I'm trying to work out the maximum number of points visible in the viewport at a given zoom level.
My naive approach is to get the viewing area (in coordinates) and use that as a "fitting rectangle" and see how many points fit in the area.
I had a look around but I couldn't find any algorithm for "best fit" of random points in a rectangular area.
It seems a quite common problem so I probably don't know the right keywords to use.
Any help in getting me to a solution would be appreciated.
EDIT: thanks for the answers but I'm afraid I didn't make myself clear. Fitting a rectangle over ALL the points is pretty much a trivial affair (sort them all, get the min/max and voilà).
What I want to know is the maximum number of points that can be fit under a FIXED SIZED rectangle: I've got all my points and a "moving window" of fixed size and I want to know how many points I can fit in.
Sorry for the bad initial explanation.
Cheers.
To find a best-fit rectangle over a set of points, and with the assumption that all points in the set need to be within the rectangle, all you need to do is find the min/max in both dimensions.
One way to do this would be to sort the points by their X dimension and take the first and last as the min/max in that dimension, and then repeat the process in the Y dimension to get that min/max. From that information, you have all you need to make a rectangle.
From a computational complexity standpoint, the complexity is 2x the complexity of the sort algorithm used (since you have to sort 2 times) + the complexity of getting the first and last elements of each sorted set, which, if you use an array, for example, is an O(1) operation.
If you use merge sort, and sort into arrays, you have an overall complexity of O(n log n). Broken down into number of operations, you have 2(n log n) + 4.
This wont give you the tightest fit on the set of rectangles because it won't ensure that one side of the rectangle is collinear with at least 2 of the points (for that you will need the Rotating Calipers algorithm that #Bart Kiers suggestes), but it is a much faster algorithm since the rotating calipers does esentially the same as I have described here, but then rotates the rectangle until one of it's edges lines up with 2 of the min/max points.