Caching in ABAP - abap

In my scenario, I connect my ABAP system to a non ABAP based system using HTTP destination.
I want to implement caching in ABAP such that the performance of the application can be used and I don't have to hit the backend every time.
I guess in ABAP the caching can be only implemented by using the Shared memory.
https://help.sap.com/doc/abapdocu_751_index_htm/7.51/en-US/abenuse_shared_memory_guidl.htm
Is this correct?

I guess that by "buffering" you mean "loaded into ABAP memory and avoiding additional database roundtrips"?
If yes, I share your understanding that shared memory would be the only means to do that.
However, consider that on top of your database, you can have 1..n application servers, each of which can have 1..n work processes. Shared memory will allow you to buffer stuff across the work processes within one application server, but not across application servers.
If you take other means of "buffering" into account, such as aggregated views on otherwise slow-to-join data, you could get additional means by using appropriate database views or materializations.

Each time the ABAP AS get's a http request you get a new "session" (roll area). You are right that shared memory could be an option to implement a buffer. Another option could be to switch on table buffering in SE11.
But the typical way is really to start always from the database and read the data again.
To improve the performance of the application you could try to reduce the calls from http to the ABAP AS an implement more logic on the http side.
Please consider also that the DBMS caches too. Maybe that could also improve the response-time in many configurations.

You have to start all the select on ABAP then, send all of your's data to http request. You can elaborate it on the other system and do whatever you want. At the end, send results to abap and complete your purpose. This is the fast way

It depends on what your service is doing.
If it accesses a table you can simply buffer the table itself:
from ABAP tx SE11, go to Technical Settings->Buffering Switch On->Fully buffered.
That should be enough to speed up your service.

Related

How to cache connections to different Postgres/MySQL databases in Golang?

I am having an application where different users may connect to different databases (those can be either MySQL or Postgres), what might be the best way to cache those connections across different databases? I saw some connection pools but seems like they are more for one db multiple connections than for multiple db multiple connections.
PS:
For adding more context, I am designing a multi tenant architecture where each tenant connects to one or multiple databases, I have an option for using map[string]*sql.DB where the key is the url of the database, but it can be hardly scaled when we have numerous number of databases. Or should we have a sharding layer for each incoming request sharded by connection url, so each machine will contain just the right amount of database connections in the form of map[string]*sql.DB?
An example for the software that I want to build is https://www.sigmacomputing.com/ where the user can connects to multiple databases for working with different tables.
Both MySQL and Postgres do not allow to connection sharing between multiple database users, single database user is specified in connection credentials. If you mean that your different users have their own database credentials, then it is not possible to share connections between them.
If by "different users" you mean your application users and if they share single database user to access DB deeper in the app, then you don't need to do anything particular to "cache" connections. sql.DB keeps and reuses open connections in its pool by default.
Go automatically opens, closes and reuses DB connections with a *database/sql.DB. By default it keeps up to 2 connections open (idle) and opens unlimited number of new connections under concurrency when all opened connections are already busy.
If you need some fine tuning on pool efficiency vs database load, you may want to alter sql.DB config with .Set* methods, for example SetMaxOpenConns.
You seem to have to many unknowns. In cases like this I would apply good, old agile and start with prototype of what you want to achieve with tools that you already know and then benchmark the performance. I think you might be surprised how much go can handle.
Since you understand how to use map[string]*sql.DB for that purpose I would go with that. You reach some limits? Add another machine behind haproxy. Solving scaling problem doesn't necessary mean writing new db pool in go. Obviously if you need this kind of power you can always do it - pgx postgres driver has it's own pool implementation so you can get your inspiration there. However doing this right now seems to be pre-mature optimization - solving problem you don't have yet. Building prototype with map[string]*sql.DB is easy, test it, benchmark it, you will see if you need more.
p.s. BTW you will most likely hit first file descriptor limit before you will be able to exhaust memory.
Assuming you have multiple users with multiple databases with an N to N relation, you could have a map of a database URL to database details (explained below).
The fact that which users have access to which databases should be handled anyway using configmap or a core database; For Database Details, we could have a struct like this:
type DBDetail {
sync.RWMutex
connection *sql.DB
}
The map would be database URL to database's details (dbDetail) and if a user is write it calls this:
dbDetail.Lock()
defer dbDetail.Unock()
and for reads instead of above just use RLock.
As said by vearutop the connections could be a pain but using this you could have a single connection or set the limit with increment and decrement of another variable after Lock.
There isn’t necessarily a correct architectural answer here. It depends on some of the constraints of the system.
I have an option for using map[string]*sql.DB where the key is the url of the database, but it can be hardly scaled when we have numerous number of databases.
Whether this will scale sufficiently depends on the expectation of how numerous the databases will be. If there are expected to be tens or hundreds of concurrent users in the near future, is probably sufficient. Often a good next step after using a map is to transition over to a more full featured cache (for example https://github.com/dgraph-io/ristretto).
A factor in the decision of whether to use a map or cache is how you imagine the lifecycle of a database connection. Once a connection is opened, can that connection remain opened for the remainder of the lifetime of the process or do connections need to be closed after minutes of no use to free up resources.
Should we have a sharding layer for each incoming request sharded by connection url, so each machine will contain just the right amount of database connections in the form of map[string]*sql.DB?
The right answer here depends on how many processing nodes are expected and whether there will be gain additional benefits from routing requests to specific machines. For example, row-level caching and isolating users from each other’s requests is an advantage that would be gained by sharing users across the pool. But a disadvantage is that you might end up with “hot” nodes because a single user might generate a majority of the traffic.
Usually, a good strategy for situations like this is to be really explicit about the constraints of the problem. A rule of thumb was coined by Jeff Dean for situations like this:
Ensure your design works if scale changes by 10X or 20X but the right solution for X [is] often not optimal for 100X
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf
So, if in the near future, the system needs to support tens of concurrent users. The simplest that will support tens to hundreds of concurrent users (probably a map or cache with no user sharding is sufficient). That design will have to change before the system can support thousands of concurrent users. Scaling a system is often a good problem to have because it usually indicates a successful project.

How can we setup DB and ORM for the absence of Data Consistency requierement?

Imagine we have a web-site which sends write and read requests into some DB via Hibernate. I use Java, but it doesn't matter for this question.
Usually we want to read the fresh data from DB. But I want to introduce some delay between the written data becomes visible to reads just to increase the performance. I.e. I dont need to "publish" the rows inserted into DB immediately. Its OK for me to "publish" fresh data after some delay.
How can I achieve it?
As far as I understand this can be set up on several different tiers of my system.
I can cache some requests in front-end. Probably I should set up proxy server for this. But this will work only if all the parameters of the query match.
I can cache the read requests in Hibernate. OK, but can I specify or estimate the average time the read query will return stale data after some fresh insert occurred? In other words how can I control the delay time between fresh data becomes visible to the users?
Or may be I should use something like a memcached system instead of Hibernate cache?
Probably I can set something in DB. I dont know what should I do with DB. Probably I can ease the isolation level to burst the performance of my DB.
So, which way is the best one?
And the main question, of course: does the relaxation of requirements I introduce here may REALLY help to increase the performance of my system?
If I am reading your architecture correct you have client -> server -> database server
Answers to each point
This will put the burden on the client to implement the caching if you only use your own client I would go for this method. It will have the side effect of improving client performance possibly and put less load on the server and database server so they will scale better.
Now caching on the server will improve scalability of the database server and possibly performance in the client but will put a memory burden on the server. This would be my second option
Implement something in the database. At this point what are you gaining? the database server still has to do work to determine what rows to send back. And also you will get no scalability benefits.
So to sum up I would cache at the client first if you can if not cache at the server. Leave the DB out of the loop.
To answer your main question - caching is one of the most effective ways of increasing both performance and scalability of web applications which are constrained by database performance - your application may or may not fall into this category.
In general, I'd recommend setting up a load testing rig, and measure the various parts of your app to identify the bottleneck before starting to optimize.
The most effective cache is one outside your system - a CDN or the user's browser. Read up on browser caching, and see if there's anything you can cache locally. Browsers have caching built in as a standard feature - you control them via HTTP headers. These caches are very effective, because they stop requests even reaching your infrastructure; they are very efficient for static web assets like images, javascript files or stylesheets. I'd consider a proxy server to be in the same category. The major drawback is that it's hard to manage this cache - once you've said to the browser "cache this for 2 weeks", refreshing it is hard.
The next most effective caching layer is to cache (parts of) web pages on your application server. If you can do this, you avoid both the cost of rendering the page, and the cost of retrieving data from the database. Different web frameworks have different solutions for this.
Next, you can cache at the ORM level. Hibernate has a pretty robust implementation, and it provides a lot of granularity in your cache strategies. This article shows a sample implementation, including how to control the expiration time. You get a lot of control over caching here - you can specify the behaviour at the table level, so you can cache "lookup" data for days, and "transaction" data for seconds.
The database already implements a cache "under the hood" - it will load frequently used data into memory, for instance. In some applications, you can further improve the database performance by "de-normalizing" complex data - so the import routine might turn a complex data structure into a simple one. This does trade of data consistency and maintainability against performance.

Good ways to decouple GUIs from SOAP/WS-API update/write calls?

Let's assume we have some configuration GUI that in its current form uses direct DB transactions to submit new configurations for more than one configurable component in a consistent manner.
Now let's move the data (DB) stuff behind some SOAP/WS API. The GUI has no direct DB access anymore. The transactional behaviour must remain, but the API should NOT be designed to explcitly accommodate the GUI form submissions. In fact, I don't even know how the new GUI will work or how the user input will be structured. Therefore I need to provide something like WS-AtomicTransaction on the API server side. However, there are (at least) two caveats:
The GUI is written in PHP: I don't think there is any WS-Transaction support in PHP available.
I don't want to keep DB transactions open on the server side while waiting for additional client requests.
Solutions I can think of:
using Camel's aggregation. However, that would make things more complicated in at least two ways:
You cannot use DB row ids of newly inserted rows in the subsequent calls inside the same transaction. You need to use some sort of symbolic back-referencing because there would be no communication between client and server while processing the aggregated messages.
call replies would not be immediate (or the immediate and separate reply to each single call would only be some sort of a stub, ie. not containing any useful information beyond "your message has been attached to TX xyz" -- if that's at all possible in the Camel aggregation case).
the two disadvantages of the previous solution make me think of request batches where possibly the WS standards provide means for referencing call results in subsequent calls inside the batch transaction. Is there any such thing already available? Maybe even as a PHP client?
trying to eliminate lock contention in the database by carefully using row-level locks etc. However, when inserting new elements, my guess is that usually pages and index pages need to be locked by the DB.
maybe some server-side persistence layer using optimistic locking? But again, that would not return any DB IDs back to the client before the final commit if DB writes would be postponed until the commit (don't know if that's possible at all).
What do YOU think?
Transactions are a powerful tool and we easily get into a thinking pattern in which we see every problem as a nail we hit with this big hammer. I can relate to your confusion because I've experienced it myself. Unfortunately I have no better advice for you than to try not think in terms of transactions but of atomic API calls.
When I think in terms of transactions, my thought pattern usually goes like this:
start transaction
read (repeat as required)
update (repeat as required)
commit/roll back
It takes some time to realize that we overuse this pattern. Actual conflicts are rare and there are many other ways of dealing with them. Here is a commonly used one in APIs
read and send data to client (atomic API call)
update data (on the client)
send original + updates back to the server (atomic API call)
start transaction (on server)
read
compare with original from client
if not same, return error (client should retry)
if same, update
commit
The last six points are part of the implementation of the API call.
Ferenc Mihaly
http://theamiableapi.com

Best practice for inserting and querying data from memory

We have an application that takes real time data and inserts it into database. it is online for 4.5 hours a day. We insert data second by second in 17 tables. The user at any time may query any table for the latest second data and some record in the history...
Handling the feed and insertion is done using a C# console application...
Handling user requests is done through a WCF service...
We figured out that insertion is our bottleneck; most of the time is taken there. We invested a lot of time trying to finetune the tables and indecies yet the results were not satisfactory
Assuming that we have suffecient memory, what is the best practice to insert data into memory instead of having database. Currently we are using datatables that are updated and inserted every second
A colleague of ours suggested another WCF service instead of database between the feed-handler and the WCF user-requests-handler. The WCF mid-layer is supposed to be TCP-based and it keeps the data in its own memory. One may say that the feed handler might deal with user-requests instead of having a middle layer between 2 processes, but we want to seperate things so if the feed-handler crashes we want to still be able to provide the user with the current records
We are limited in time, and we want to move everything to memory in short period. Is having a WCF in the middle of 2 processes a bad thing to do? I know that the requests add some overhead, but all of these 3 process(feed-handler, In memory database (WCF), user-request-handler(WCF) are going to be on the same machine and bandwidth will not be that much of an issue.
Please assist!
I would look into creating a cache of the data (such that you can also reduce database selects), and invalidate data in the cache once it has been written to the database. This way, you can batch up calls to do a larger insert instead of many smaller ones, but keep the data in-memory such that the readers can read it. Actually, if you know when the data goes stale, you can avoid reading the database entirely and use it just as a backing store - this way, database performance will only affect how large your cache gets.
Invalidating data in the cache will either be based on whether its written to the database or its gone stale, which ever comes last, not first.
The cache layer doesn't need to be complicated, however it should be multi-threaded to host the data and also save it in the background. This layer would sit just behind the WCF service, the connection medium, and the WCF service should be improved to contain the logic of the console app + the batching idea. Then the console app can just connect to WCF and throw results at it.
Update: the only other thing to say is invest in a profiler to see if you are introducing any performance issues in code that are being masked. Also, profile your database. You mention you need fast inserts and selects - unfortunately, they usually trade-off against each other...
What kind of database are you using? MySQL has a storage engine MEMORY which would seem to be suited to this sort of thing.
Are you using DataTable with DataAdapter? If so, I would recommend that you drop them completely. Insert your records directly using DBCommand. When users request reports, read data using DataReader, or populate DataTable objects using DataTable.Load (IDataReader).
Storying data in memory has the risk of losing data in case of crashes or power failures.

SQL Server 2005, Caches and all that jazz

Background to question: I'm looking to implement a caching system for my website. Currently we're exploring memcache as a means of doing this. However, I am looking to see if something similar exists for SQL Server. I understand that MySQL has query cache which although is not distributed works as a sort of 'stop gap' measure. Is MySQL query cache equivalent to the buffer cache in SQL Server?
So here are my questions:
Is there a way to know is currently stored in the buffer cache?
Follow up to this, is there a way to force certain tables or result sets into the cache
How much control do I have over what goes on in the buffer and procedure cache? I understand there used to be a DBCC PINTABLE command but that has since been discontinued.
Slightly off topic: Should the caching even exists on the database layer? Or it is more prudent to manage caches using Velocity/Memcache? Is so, why? It seems like cache invalidation is something of a pain when handling many objects with overlapping triggers.
Thanks!
SQL Server implements a buffer pool same way every database product under the sun does (more or less) since System R showed the way. The gory details are explain in Transaction Processing: Concepts and Techniques. I addition it has a caching framework used by the procedure cache, permission token cache and many many other caching classes. This framework is best described in Clock Hands - what are they for.
But this is not the kind of caching applications are usually interested in. The internal database cache is perfect for scale-up scenarios where a more powerfull back end database is able to respond faster to more queries by using these caches, but the modern application stack tends to scale out the web servers and the real problem is caching the results of query interogations in a cache used by the web farm. Ideally, this cache should be shared and distributed. Memcached and Velocity are examples of such application caching infrastructure. Memcache has a long history by now, its uses and shortcommings are understood, there is significant know-how around how to use it, deploy it, manage it and monitor it.
The biggest problem with caching in the application layer, and specially with distributed caching, is cache invalidation. How to detect the changes that occur in the back end data and mark cached entries invalid so that new requests don't use stale data.
The simplest (for some definition of simple...) alternative is proactive invalidation from the application. The code knows when it changes an entity in the database, and after the change occurs it takes the extra step to mark the cached entries invalid. This has several short commings:
Is difficult to know exactly which cached entries are to be invalidated. Dependencies can be quite complex, things are always more that just a simple table/entry, there are aggregate queries, joins, partitioned data etc etc.
Code discipline is required to ensure all paths that modify data also invalidate the cache.
Changes to the data that occur outside the application scope are not detected. In practice, there are always changes that occur outside the application scope: other applications using the same data, import/export and ETL jobs, manual intervention etc etc.
A more complicated alternative is a cache that is notified by the database itself when changes occur. Not many technologies are around to support this though, it cannot work without an active support from the database. SQL Server has Query Notifications for such scenarios, you can read more about it at The Mysterious Notification. Implementing QN based caching in a standalone application is fairly complicated (and often done badly) but it works fine when implemented correctly. Doing so in a shared scaled out cache like Memcached is quite a feats of strength, but is doable.
Nai,
Answers to your questions follow:
From Wiki - Always correct... ? :-). For a more Microsoft answer, here is their description on Buffer Cache.
Buffer management
SQL Server buffers pages in RAM to
minimize disc I/O. Any 8 KB page can
be buffered in-memory, and the set of
all pages currently buffered is called
the buffer cache. The amount of memory
available to SQL Server decides how
many pages will be cached in memory.
The buffer cache is managed by the
Buffer Manager. Either reading from or
writing to any page copies it to the
buffer cache. Subsequent reads or
writes are redirected to the in-memory
copy, rather than the on-disc version.
The page is updated on the disc by the
Buffer Manager only if the in-memory
cache has not been referenced for some
time. While writing pages back to
disc, asynchronous I/O is used whereby
the I/O operation is done in a
background thread so that other
operations do not have to wait for the
I/O operation to complete. Each page
is written along with its checksum
when it is written. When reading the
page back, its checksum is computed
again and matched with the stored
version to ensure the page has not
been damaged or tampered with in the
meantime.
For this answer, please refer to the above answer:
Either reading from or writing to any page copies it to the buffer cache. Subsequent reads or writes are redirected to the in-memory copy, rather than the on-disc version.
You can query the bpool_commit_target and bpool_committed columns in the sys.dm_os_sys_info catalog view to return the number of pages reserved as the memory target and the number of pages currently committed in the buffer cache, respectively.
I feel like Microsoft has had time to figure out caching for their product and should be trusted.
I hope this information was helpful,
Thanks!
Caching can take many different meaning for an ASP.Net application spread from the browser all the way to your hardware with the IIS, Application, Database thrown in the middle.
The caching you are talking about is Database level caching, this is mostly transparent to your application. This level of caching will include buffer pools, statement caches etc. Make sure your DB server has plenty of RAM. In theory a DB server should be able to load the entire DB store in memory. There is not much you can do at this level unless you pre-fetch some anticipated data when you start the application and ensure that it is in DB cache.
On the other hand is in-memory distributed caching system. Apart from memcache and velocity, you can look at some commercial solutions like NCache or Oracle Coherence. I have no experience in either of them to recommend. This level of caching promises scalability at a cheaper cost. It is expensive to scale the DB tier compared to this. You may have to consider aspects like network bandwidth though. This type of caching, specially with invalidation and expiry can be complicated
You can cache at Web Service tier using output caching at IIS level (in IIS 7) and ASP.Net level.
At the application level you can use ASP.Net cache. This is the one that you can control most and gives you good benefits.
Then there is caching going on at client web proxy tier that can be controlled by cache-control HTTP header.
Finally you have browser level caching, view state and cookies for small data.
And don't forget that hardware like SAN caches at physical disk access level too.
In summary caching can occur at many levels and it for you to analyse and implement the best solution for your scenario. You have find out stability and volatility of your data, expected load etc. I believe caching at ASP.Net level (specially for objects) gives you most flexibility and control.
Your specific technical questions about SQL Server's buffer cache are going down the wrong path when it comes to "implement a caching system for my website".
Sure, SQL Server is going to cache data so it can improve its performance (and it does so rather well), but the point of implementing a caching layer on your web front-ends is to avoid from having to talk to the database at all - because there is still overhead and resource contention even when your query is fulfilled entirely from SQL Server's cache.
You want to be looking into is: memcached, Velocity, ASP.NET Cache, P&P Caching Application Block, etc.