pandas groupby got KeyError - pandas

I am using pandas to calculate some stats of a data file and got some error. It's reproducible by this simple sample code:
import pandas as pd
df = pd.DataFrame({'A': [1,2,3,4,5,6,7,8,9],
'B': [1,2,3,1,2,3,1,2,3],
'C': ['a', 'b', 'a', 'b', 'a', 'b', 'a','a', 'b']})
def testFun2(x):
return pd.DataFrame({'xlen': x.shape[0]})
def testFun(x):
b = x['B']
print "b equals to {}".format(b) # This line prints okay
c = x['C']
out = pd.DataFrame()
for a in x['A'].unique():
subx = x[x.A == a]
subxg = testFun2(subx)
out = pd.concat([out, subxg])
return out
df.groupby(['B', 'C']).apply(lambda x: testFun(x))
The whole error output look like this:
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-21-979d23aa904c> in <module>()
18 return out
19
---> 20 df.groupby(['B', 'C']).apply(lambda x: testFun(x))
C:\Users\Administrator\Anaconda2\lib\site-packages\pandas\core\groupby\groupby.pyc in apply(self, func, *args, **kwargs)
928
929 with _group_selection_context(self):
--> 930 return self._python_apply_general(f)
931
932 return result
C:\Users\Administrator\Anaconda2\lib\site-packages\pandas\core\groupby\groupby.pyc in _python_apply_general(self, f)
934 def _python_apply_general(self, f):
935 keys, values, mutated = self.grouper.apply(f, self._selected_obj,
--> 936 self.axis)
937
938 return self._wrap_applied_output(
C:\Users\Administrator\Anaconda2\lib\site-packages\pandas\core\groupby\groupby.pyc in apply(self, f, data, axis)
2271 # group might be modified
2272 group_axes = _get_axes(group)
-> 2273 res = f(group)
2274 if not _is_indexed_like(res, group_axes):
2275 mutated = True
<ipython-input-21-979d23aa904c> in <lambda>(x)
18 return out
19
---> 20 df.groupby(['B', 'C']).apply(lambda x: testFun(x))
<ipython-input-21-979d23aa904c> in testFun(x)
9
10 def testFun(x):
---> 11 b = x['B']
12 c = x['C']
13 out = pd.DataFrame()
C:\Users\Administrator\Anaconda2\lib\site-packages\pandas\core\frame.pyc in __getitem__(self, key)
2686 return self._getitem_multilevel(key)
2687 else:
-> 2688 return self._getitem_column(key)
2689
2690 def _getitem_column(self, key):
C:\Users\Administrator\Anaconda2\lib\site-packages\pandas\core\frame.pyc in _getitem_column(self, key)
2693 # get column
2694 if self.columns.is_unique:
-> 2695 return self._get_item_cache(key)
2696
2697 # duplicate columns & possible reduce dimensionality
C:\Users\Administrator\Anaconda2\lib\site-packages\pandas\core\generic.pyc in _get_item_cache(self, item)
2487 res = cache.get(item)
2488 if res is None:
-> 2489 values = self._data.get(item)
2490 res = self._box_item_values(item, values)
2491 cache[item] = res
C:\Users\Administrator\Anaconda2\lib\site-packages\pandas\core\internals.pyc in get(self, item, fastpath)
4113
4114 if not isna(item):
-> 4115 loc = self.items.get_loc(item)
4116 else:
4117 indexer = np.arange(len(self.items))[isna(self.items)]
C:\Users\Administrator\Anaconda2\lib\site-packages\pandas\core\indexes\base.pyc in get_loc(self, key, method, tolerance)
3078 return self._engine.get_loc(key)
3079 except KeyError:
-> 3080 return self._engine.get_loc(self._maybe_cast_indexer(key))
3081
3082 indexer = self.get_indexer([key], method=method, tolerance=tolerance)
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'B'
However, I found that if the testFun2 is changed to something simpler, like:
def testFun2(x):
return 1
then the error won't occur. This is very confusing to me - the testFun2 has nothing to do with the line b = x['B'], right? Why did I get the error in the first place? Thanks!

Related

Getting error message when trying to get at risk numbers below KM-plot (lifelines)

I've used lifelines a lot, but when I'm re-running old code that previously worked fine I get the following error: KeyError: "None of [Index(['At risk', 'Censored', 'Events'], dtype='object')] are in the [index]"
I'm guessing there has been some changes to the code when displaying at risk counts, but I can't find any evidence of it in the lifelines documentation. I am using version 27.0
Snippet of the table with data
index
t2p
O
1
354
False
2
113
False
3
1222
False
4
13
True
5
59
False
6
572
False
Code:
ax = plt.subplot(111)
m = KaplanMeierFitter()
ax = m.fit(h.t2p, h.O, label='PPI').plot_cumulative_density(ax=ax,ci_show=False)
add_at_risk_counts(m)
Full error:
KeyError Traceback (most recent call last)
<ipython-input-96-a8ce3ea9e60c> in <module>
4 ax = m.fit(h.t2p, h.O, label='PPI').plot_cumulative_density(ax=ax,ci_show=False)
5
----> 6 add_at_risk_counts(m)
7
8
~\AppData\Local\Continuum\anaconda3\lib\site-packages\lifelines\plotting.py in add_at_risk_counts(labels, rows_to_show, ypos, xticks, ax, at_risk_count_from_start_of_period, *fitters, **kwargs)
510 .rename({"at_risk": "At risk", "censored": "Censored", "observed": "Events"})
511 )
--> 512 counts.extend([int(c) for c in event_table_slice.loc[rows_to_show]])
513
514 if n_rows > 1:
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\indexing.py in __getitem__(self, key)
1766
1767 maybe_callable = com.apply_if_callable(key, self.obj)
-> 1768 return self._getitem_axis(maybe_callable, axis=axis)
1769
1770 def _is_scalar_access(self, key: Tuple):
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\indexing.py in _getitem_axis(self, key, axis)
1952 raise ValueError("Cannot index with multidimensional key")
1953
-> 1954 return self._getitem_iterable(key, axis=axis)
1955
1956 # nested tuple slicing
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\indexing.py in _getitem_iterable(self, key, axis)
1593 else:
1594 # A collection of keys
-> 1595 keyarr, indexer = self._get_listlike_indexer(key, axis, raise_missing=False)
1596 return self.obj._reindex_with_indexers(
1597 {axis: [keyarr, indexer]}, copy=True, allow_dups=True
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\indexing.py in _get_listlike_indexer(self, key, axis, raise_missing)
1551
1552 self._validate_read_indexer(
-> 1553 keyarr, indexer, o._get_axis_number(axis), raise_missing=raise_missing
1554 )
1555 return keyarr, indexer
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\indexing.py in _validate_read_indexer(self, key, indexer, axis, raise_missing)
1638 if missing == len(indexer):
1639 axis_name = self.obj._get_axis_name(axis)
-> 1640 raise KeyError(f"None of [{key}] are in the [{axis_name}]")
1641
1642 # We (temporarily) allow for some missing keys with .loc, except in
KeyError: "None of [Index(['At risk', 'Censored', 'Events'], dtype='object')] are in the [index]"

Dask Cluster: AttributeError: 'DataFrame' object has no attribute '_data'

I'm working with a Dask Cluster on GCP. I'm using this code to deploy it:
from dask_cloudprovider.gcp import GCPCluster
from dask.distributed import Client
enviroment_vars = {
'EXTRA_PIP_PACKAGES': '"gcsfs"'
}
cluster = GCPCluster(
n_workers=32,
docker_image='daskdev/dask:2021.2.0',
env_vars=enviroment_vars,
network='my-network',
#filesystem_size=150,
machine_type='e2-standard-16',
projectid='my-project-id',
zone='us-central1-a',
on_host_maintenance="MIGRATE"
client = Client(cluster)
Then I read csv files, with the following code:
import dask.dataframe as dd
import csv
col_dtypes = {
'var1': 'float64',
'var2': 'object',
'var3': 'object',
'var4': 'float64'
}
df = dd.read_csv('gs://my_bucket/files-*.csv', blocksize=None, dtype= col_dtypes)
df = df.persist()
Everything works fine, but when I try to do some queries, or calculation, I get an error. For instance this piece of code:
df.var1.value_counts().compute()
This is the output:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-14-711a7c21ed42> in <module>
----> 1 df.var1.value_counts().compute()
/opt/conda/lib/python3.8/site-packages/dask/base.py in compute(self, **kwargs)
279 dask.base.compute
280 """
--> 281 (result,) = compute(self, traverse=False, **kwargs)
282 return result
283
/opt/conda/lib/python3.8/site-packages/dask/base.py in compute(*args, **kwargs)
561 postcomputes.append(x.__dask_postcompute__())
562
--> 563 results = schedule(dsk, keys, **kwargs)
564 return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)])
565
/opt/conda/lib/python3.8/site-packages/distributed/client.py in get(self, dsk, keys, workers, allow_other_workers, resources, sync, asynchronous, direct, retries, priority, fifo_timeout, actors, **kwargs)
2653 should_rejoin = False
2654 try:
-> 2655 results = self.gather(packed, asynchronous=asynchronous, direct=direct)
2656 finally:
2657 for f in futures.values():
/opt/conda/lib/python3.8/site-packages/distributed/client.py in gather(self, futures, errors, direct, asynchronous)
1962 else:
1963 local_worker = None
-> 1964 return self.sync(
1965 self._gather,
1966 futures,
/opt/conda/lib/python3.8/site-packages/distributed/client.py in sync(self, func, asynchronous, callback_timeout, *args, **kwargs)
836 return future
837 else:
--> 838 return sync(
839 self.loop, func, *args, callback_timeout=callback_timeout, **kwargs
840 )
/opt/conda/lib/python3.8/site-packages/distributed/utils.py in sync(loop, func, callback_timeout, *args, **kwargs)
338 if error[0]:
339 typ, exc, tb = error[0]
--> 340 raise exc.with_traceback(tb)
341 else:
342 return result[0]
/opt/conda/lib/python3.8/site-packages/distributed/utils.py in f()
322 if callback_timeout is not None:
323 future = asyncio.wait_for(future, callback_timeout)
--> 324 result[0] = yield future
325 except Exception as exc:
326 error[0] = sys.exc_info()
/opt/conda/lib/python3.8/site-packages/tornado/gen.py in run(self)
760
761 try:
--> 762 value = future.result()
763 except Exception:
764 exc_info = sys.exc_info()
/opt/conda/lib/python3.8/site-packages/distributed/client.py in _gather(self, futures, errors, direct, local_worker)
1827 exc = CancelledError(key)
1828 else:
-> 1829 raise exception.with_traceback(traceback)
1830 raise exc
1831 if errors == "skip":
/opt/conda/lib/python3.8/site-packages/dask/optimization.py in __call__()
961 if not len(args) == len(self.inkeys):
962 raise ValueError("Expected %d args, got %d" % (len(self.inkeys), len(args)))
--> 963 return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args)))
964
965 def __reduce__(self):
/opt/conda/lib/python3.8/site-packages/dask/core.py in get()
149 for key in toposort(dsk):
150 task = dsk[key]
--> 151 result = _execute_task(task, cache)
152 cache[key] = result
153 result = _execute_task(out, cache)
/opt/conda/lib/python3.8/site-packages/dask/core.py in _execute_task()
119 # temporaries by their reference count and can execute certain
120 # operations in-place.
--> 121 return func(*(_execute_task(a, cache) for a in args))
122 elif not ishashable(arg):
123 return arg
/opt/conda/lib/python3.8/site-packages/dask/utils.py in apply()
33 def apply(func, args, kwargs=None):
34 if kwargs:
---> 35 return func(*args, **kwargs)
36 else:
37 return func(*args)
/opt/conda/lib/python3.8/site-packages/dask/dataframe/core.py in apply_and_enforce()
5474 return meta
5475 if is_dataframe_like(df):
-> 5476 check_matching_columns(meta, df)
5477 c = meta.columns
5478 else:
/opt/conda/lib/python3.8/site-packages/dask/dataframe/utils.py in check_matching_columns()
690 def check_matching_columns(meta, actual):
691 # Need nan_to_num otherwise nan comparison gives False
--> 692 if not np.array_equal(np.nan_to_num(meta.columns), np.nan_to_num(actual.columns)):
693 extra = methods.tolist(actual.columns.difference(meta.columns))
694 missing = methods.tolist(meta.columns.difference(actual.columns))
/opt/conda/lib/python3.8/site-packages/pandas/core/generic.py in __getattr__()
5268 or name in self._accessors
5269 ):
-> 5270 return object.__getattribute__(self, name)
5271 else:
5272 if self._info_axis._can_hold_identifiers_and_holds_name(name):
pandas/_libs/properties.pyx in pandas._libs.properties.AxisProperty.__get__()
/opt/conda/lib/python3.8/site-packages/pandas/core/generic.py in __getattr__()
5268 or name in self._accessors
5269 ):
-> 5270 return object.__getattribute__(self, name)
5271 else:
5272 if self._info_axis._can_hold_identifiers_and_holds_name(name):
AttributeError: 'DataFrame' object has no attribute '_data'
The version of Pandas in my docker file is 1.0.1, so I already try upgrading Pandas (to version 1.2.2), but it didn't work, what am I doing wrong?
My guess is that you have a version mismatch somewhere. What does client.get_versions(check=True) say?

matplotlib issue: how to erase this one?

import maplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame(np.random.randn(30,3)*100+1000,
index=pd.date_range(start='2018-09-01', periods=30, freq='D'),
columns=['1', '2', 3'])
df[:5].plot.bar()
a Seeing the graph, each x label has '00:00:00', which is unnecessary.
So I tried to delete these by writing this code.
df[:5].plot.bar(x=df[:5].index.date
But it has an error like this.
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-52-92dd89374fec> in <module>
----> 1 df[:5].plot.bar(x=df[:5].index.date, stacked=True)
~\anaconda3\lib\site-packages\pandas\plotting\_core.py in bar(self, x, y, **kwargs)
1001 >>> ax = df.plot.bar(x='lifespan', rot=0)
1002 """
-> 1003 return self(kind="bar", x=x, y=y, **kwargs)
1004
1005 def barh(self, x=None, y=None, **kwargs):
~\anaconda3\lib\site-packages\pandas\plotting\_core.py in __call__(self, *args, **kwargs)
810 if is_integer(x) and not data.columns.holds_integer():
811 x = data_cols[x]
--> 812 elif not isinstance(data[x], ABCSeries):
813 raise ValueError("x must be a label or position")
814 data = data.set_index(x)
~\anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
2804 if is_iterator(key):
2805 key = list(key)
-> 2806 indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1]
2807
2808 # take() does not accept boolean indexers
~\anaconda3\lib\site-packages\pandas\core\indexing.py in _get_listlike_indexer(self, key, axis, raise_missing)
1550 keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr)
1551
-> 1552 self._validate_read_indexer(
1553 keyarr, indexer, o._get_axis_number(axis), raise_missing=raise_missing
1554 )
~\anaconda3\lib\site-packages\pandas\core\indexing.py in _validate_read_indexer(self, key, indexer, axis, raise_missing)
1638 if missing == len(indexer):
1639 axis_name = self.obj._get_axis_name(axis)
-> 1640 raise KeyError(f"None of [{key}] are in the [{axis_name}]")
1641
1642 # We (temporarily) allow for some missing keys with .loc, except in
KeyError: "None of [Index([2018-09-01, 2018-09-02, 2018-09-03, 2018-09-04, 2018-09-05], dtype='object')] are in the [columns]"
What's the problem?? I just followed the book, but it did come out.
You can change index values before selecting first 5 rows:
df.index = df.index.date
df[:5].plot.bar()
Or:
df.rename(lambda x: x.date())[:5].plot.bar()

Python function to calculate balance for every row corresponding to individual transactions

I am working on a bank statement, corresponding to the output dataframe and an ending balance corresponding to the output['balance'][0] I would like to calculate all balance values for the individual transactions as described below. It's a very straightforward calculation and yet it doesn't seem to be working - is there something quite obvious I am missing? Thanks in advance!
output['balance'] = ''
output['balance'][0] = 21.15
if len(output[amount]) > 0:
return output[balance][i+1].append((output[balance][i]-output[amount][i+1]))
else:
output[balance].append((output[balance][0]))
output[['balance']] = output['Amount'].apply(lambda amount: bal_calc(output, amount))```
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
~\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
2896 try:
-> 2897 return self._engine.get_loc(key)
2898 except KeyError:
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 4.95
During handling of the above exception, another exception occurred:
KeyError Traceback (most recent call last)
<ipython-input-271-b85947935fca> in <module>
----> 1 output[['balance']] = output['Amount'].apply(lambda amount: bal_calc(output, amount))
~\Anaconda3\lib\site-packages\pandas\core\series.py in apply(self, func, convert_dtype, args, **kwds)
4040 else:
4041 values = self.astype(object).values
-> 4042 mapped = lib.map_infer(values, f, convert=convert_dtype)
4043
4044 if len(mapped) and isinstance(mapped[0], Series):
pandas/_libs/lib.pyx in pandas._libs.lib.map_infer()
<ipython-input-271-b85947935fca> in <lambda>(amount)
----> 1 output[['balance']] = output['Amount'].apply(lambda amount: bal_calc(output, amount))
<ipython-input-270-cbf5ac20716d> in bal_calc(output, amount)
2 output['balance'] = ''
3 output['balance'][0] = 21.15
----> 4 if len(output[amount]) > 0:
5 return output[balance][i+1].append((output[balance][i]-output[amount][i+1]))
6 else:
~\Anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
2978 if self.columns.nlevels > 1:
2979 return self._getitem_multilevel(key)
-> 2980 indexer = self.columns.get_loc(key)
2981 if is_integer(indexer):
2982 indexer = [indexer]
~\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
2897 return self._engine.get_loc(key)
2898 except KeyError:
-> 2899 return self._engine.get_loc(self._maybe_cast_indexer(key))
2900 indexer = self.get_indexer([key], method=method, tolerance=tolerance)
2901 if indexer.ndim > 1 or indexer.size > 1:
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 4.95
It will be easier to understand your problem you can post your existing dataframe and intended dataframe. From your description I think you can approach calculating balance like this
import pandas as pd
## creating dummy dataframe for testing
arr = np.random.choice(range(500,1000),(10,2))
debit_credit = np.random.choice([0,1], (10))
arr[:,0] = arr[:,0] * debit_credit
arr[:,1] = arr[:,1] * (1-debit_credit)
df=pd.DataFrame(arr, columns=["Debit", "Credit"])
display(df)
## calculating Balance
df["Balance"] = (df.Debit-df.Credit).cumsum()
display(df)
Output
Debit Credit Balance
0 957 0 957
1 0 698 259
2 608 0 867
3 0 969 -102
4 0 766 -868
5 0 551 -1419
6 985 0 -434
7 861 0 427
8 927 0 1354
9 0 923 431
bs['balance'][0] = 21.15
for i in range(1, len(bs)):
bs.loc[i, 'balance'] = bs.loc[i-1, 'balance'] + bs.loc[i, 'Credit'] -bs.loc[i, 'Debit']

How do select 2nd column or a matrix from a pandas dataframe?

How do you select column other than the first column?
import pandas as pd
df = pd.read_csv('bio.csv')
df
I could select the first column, i.e., "Index"
df['Index']
However, I could not select the second column, i.e., "Height".
df['Height']
Here is the trace:
KeyError Traceback (most recent call last)
C:\util\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
2441 try:
-> 2442 return self._engine.get_loc(key)
2443 except KeyError:
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'Height'
During handling of the above exception, another exception occurred:
KeyError Traceback (most recent call last)
<ipython-input-8-58aff8413556> in <module>()
----> 1 df['Height']
C:\util\Anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
1962 return self._getitem_multilevel(key)
1963 else:
-> 1964 return self._getitem_column(key)
1965
1966 def _getitem_column(self, key):
C:\util\Anaconda3\lib\site-packages\pandas\core\frame.py in _getitem_column(self, key)
1969 # get column
1970 if self.columns.is_unique:
-> 1971 return self._get_item_cache(key)
1972
1973 # duplicate columns & possible reduce dimensionality
C:\util\Anaconda3\lib\site-packages\pandas\core\generic.py in _get_item_cache(self, item)
1643 res = cache.get(item)
1644 if res is None:
-> 1645 values = self._data.get(item)
1646 res = self._box_item_values(item, values)
1647 cache[item] = res
C:\util\Anaconda3\lib\site-packages\pandas\core\internals.py in get(self, item, fastpath)
3588
3589 if not isnull(item):
-> 3590 loc = self.items.get_loc(item)
3591 else:
3592 indexer = np.arange(len(self.items))[isnull(self.items)]
C:\util\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
2442 return self._engine.get_loc(key)
2443 except KeyError:
-> 2444 return self._engine.get_loc(self._maybe_cast_indexer(key))
2445
2446 indexer = self.get_indexer([key], method=method, tolerance=tolerance)
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'Height'
Below is the complete answer
import pandas as pd
df = pd.read_csv('bio.csv', sep='[ \t]*,[ \t]*', engine='python')
df['Height']
Theis is the output:
Out[22]: 0 65.78
1 71.52
2 69.40
3 68.22
4 67.79
5 68.70
6 69.80
7 70.01
8 67.90
9 66.78
10 66.49
11 67.62
12 68.30
13 67.12
14 68.28
15 71.09