To suppress compiler warnings that originate from libraries I use in my application, I manually include their directories with target_include_directories(myapp SYSTEM ...) as system libraries before adding them with target_link_libraries like so:
add_executable(myapp myapp.cpp)
target_include_directories(myapp SYSTEM
PRIVATE "extern/lib/include"
)
target_link_libraries(myapp lib::lib)
However, that kind of feels hacky and will also break if the developers of lib decide to change the include path. This wouldn't be a problem if using only target_link_library but then, of course, they are included via -I and again I would get compiler warnings coming from this include.
Is there any more elegant and fail-safe way of doing this? It would be great if target_link_libraries had a SYSTEM option to tell cmake to include it as a system library.
I defined a function to handle this for me:
function(target_link_libraries_system target)
set(libs ${ARGN})
foreach(lib ${libs})
get_target_property(lib_include_dirs ${lib} INTERFACE_INCLUDE_DIRECTORIES)
target_include_directories(${target} SYSTEM PRIVATE ${lib_include_dirs})
target_link_libraries(${target} ${lib})
endforeach(lib)
endfunction(target_link_libraries_system)
I can now call target_link_libraries_system(myapp lib::lib) and the include directories are read from the target's properties.
This can be extended to optionally specify the PUBLIC|PRIVATE|INTERFACE scope:
function(target_link_libraries_system target)
set(options PRIVATE PUBLIC INTERFACE)
cmake_parse_arguments(TLLS "${options}" "" "" ${ARGN})
foreach(op ${options})
if(TLLS_${op})
set(scope ${op})
endif()
endforeach(op)
set(libs ${TLLS_UNPARSED_ARGUMENTS})
foreach(lib ${libs})
get_target_property(lib_include_dirs ${lib} INTERFACE_INCLUDE_DIRECTORIES)
if(lib_include_dirs)
if(scope)
target_include_directories(${target} SYSTEM ${scope} ${lib_include_dirs})
else()
target_include_directories(${target} SYSTEM PRIVATE ${lib_include_dirs})
endif()
else()
message("Warning: ${lib} doesn't set INTERFACE_INCLUDE_DIRECTORIES. No include_directories set.")
endif()
if(scope)
target_link_libraries(${target} ${scope} ${lib})
else()
target_link_libraries(${target} ${lib})
endif()
endforeach()
endfunction(target_link_libraries_system)
This extended version will also print a warning if a library didn't set its INTERFACE_INCLUDE_DIRECTORIES property.
I modified Sebastian's solution to include the scope.
function(target_link_libraries_system target scope)
set(libs ${ARGN})
foreach(lib ${libs})
get_target_property(lib_include_dirs ${lib} INTERFACE_INCLUDE_DIRECTORIES)
target_include_directories(${target} SYSTEM ${scope} ${lib_include_dirs})
target_link_libraries(${target} ${scope} ${lib})
endforeach(lib)
endfunction(target_link_libraries_system)
This was asked in the CMake discourse and #ben.boeckel (CMake developer) answered:
IMPORTED targets should already have their include directories
treated as SYSTEM though. There is the NO_SYSTEM_FROM_IMPORTED target
property to disable it.
To start with, you haven't specified whether your target that you're linking to is IMPORTED or not. I'm assuming that it is IMPORTED because include directories for IMPORTED targets are SYSTEM by default. Note: This behaviour, can be disabled. Pre-CMake v3.25, one would use one of NO_SYSTEM_FROM_IMPORTED or IMPORTED_NO_SYSTEM. For CMake 3.25 and later, one would modify the SYSTEM property of the target.
That typically just leaves the cases of targets added via add_subdirectory, which includes those added by FetchContent in its non-find_package mode. In that case, you can see the FetchContent Q&A here, and the add_subdirectory Q&A here. In summary, for pre-CMake v3.25, use a workaround in which you copy/move the INTERFACE_INCLUDE_DIRECTORIES target property to the INTERFACE_SYSTEM_INCLUDE_DIRECTORIES target property, and for CMake v3.25 or later, you can modify the SYSTEM target property, or the SYSTEM directory property, or use the SYSTEM argument of add_subdirectory/FetchContent_Declare.
Possible gotcha: If you are like me, and start every project by enabling all warnings in the toplevel directory…
# Warning level
add_compile_options(
-Wall -Wextra -Wpedantic
-Werror=switch
-Werror=return-type
-Werror=uninitialized
-Werror=format-security
-Werror=reorder
-Werror=delete-non-virtual-dtor
$<$<CONFIG:Debug>:-Werror>
)
… then, this obviously gets inherited by all subprojects (like git submodules, or what have you).
If this is the case, the solution is simple – be specific: Do it in a subdirectory, and/or use target_compile_options, for good measure:
target_compile_options(myTarget PRIVATE
...
)
Related
I want to provide the users of my library with two targets: one that specifies the include path etc., and one that carries useful extra compile options. However, for the extra target some of my users are getting the error
Cannot specify compile options for imported target "myproject::extra"
so it seems on older CMake versions.
I tested with CMake 3.9.2. The test project, including CI is on GitHub, with failing build here.
(How) can my approach be rendered robust for all CMake versions?
The project's main CMakeLists.txt:
cmake_minimum_required(VERSION 3.0)
project(myproject)
add_library(myproject INTERFACE)
set(MYPROJECT_VERSION "1.0.0")
target_include_directories(myproject INTERFACE
$<INSTALL_INTERFACE:include>
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>)
include(CMakePackageConfigHelpers)
include(GNUInstallDirs)
install(DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/include/" DESTINATION include)
install(TARGETS myproject EXPORT myproject-targets)
install(EXPORT myproject-targets FILE myprojectTargets.cmake DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/myproject")
write_basic_package_version_file("${CMAKE_CURRENT_BINARY_DIR}/myprojectConfigVersion.cmake" VERSION ${MYPROJECT_VERSION} COMPATIBILITY AnyNewerVersion)
install(FILES "${CMAKE_CURRENT_SOURCE_DIR}/myprojectConfig.cmake" "${CMAKE_CURRENT_BINARY_DIR}/myprojectConfigVersion.cmake" DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/myproject")
The project's myprojectConfig.cmake:
include(CMakeFindDependencyMacro)
if(NOT TARGET myproject)
include("${CMAKE_CURRENT_LIST_DIR}/myprojectTargets.cmake")
endif()
if(NOT TARGET myproject::extra)
add_library(myproject::extra INTERFACE IMPORTED)
if(MSVC)
target_compile_options(myproject::extra INTERFACE /W4)
else()
target_compile_options(myproject::extra INTERFACE -Wall)
endif()
endif()
The user's project CMakeLists.txt could then look as follows:
cmake_minimum_required(VERSION 3.0)
project(myexec)
find_package(myproject REQUIRED)
add_executable(myexec main.cpp)
target_link_libraries(myexec PRIVATE myproject myproject::extra)
List of functions applicable for IMPORTED and INTERFACE targets changes as CMake evolves.
Most of such functions affects only on specific target properties. So, instead of calling a function, you may set the property directly. This will work in any CMake version:
# Works only in new CMake versions
target_compile_options(myproject::extra INTERFACE /W4)
# Equivalent which works in any CMake version
set_property(TARGET myproject::extra PROPERTY INTERFACE_COMPILE_OPTIONS /W4)
I'm modeling dependencies with target_link_libraries, as is done in this blog post.
target_link_libraries(Foo
LibraryA
LibraryB
)
This is working great, but for various reasons I need to use add_custom_target to preprocess to a file through a custom command. The problem is, this custom target depends on the includes of LibraryA and LibraryB. I was really hoping to do the following like how target_link_libraries works (see the LibraryA and LibraryB bit):
add_custom_target(Bar ALL
COMMAND ${CMAKE_C_COMPILER} thing.cpp LibraryA LibraryB /P
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}/Path/Here
COMMENT "Preprocessing to a file"
VERBATIM
)
However, this doesn't work. LibraryA and LibraryB are put in as they appear. Even if it did work, I imagine I would get more than the includes, since I think the targets include the library as well. Maybe this is not a good approach.
So, what can I do here? How can I extract the include directories from each target, for use in the custom command? I found if I find_package(Foo REQUIRED) I get access to Foo_DIR, but that points to the build directory and not the source directory where the includes are.
You can extract the include directories from each target using get_target_property(). A target's INCLUDE_DIRECTORIES property contains the include directories for that target. Since you have two targets, LibraryA and LibraryB, we have to call it twice. Then, we can concatenate the list of include directories together using foreach(). If you are using these as include directories in a compiler command (such as MSVC), you can append the /I compiler option to each directory in the loop also:
# Get the include directories for the target.
get_target_property(LIBA_INCLUDES LibraryA INCLUDE_DIRECTORIES)
get_target_property(LIBB_INCLUDES LibraryB INCLUDE_DIRECTORIES)
# Construct the compiler string for the include directories.
foreach(dir ${LIBA_INCLUDES} ${LIBB_INCLUDES})
string(APPEND INCLUDE_COMPILER_STRING "/I${dir} ")
endforeach()
Then, you can call the custom target command using the constructed INCLUDE_COMPILER_STRING variable:
add_custom_target(Bar ALL
COMMAND ${CMAKE_C_COMPILER} thing.cpp ${INCLUDE_COMPILER_STRING} /P
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}/Path/Here
COMMENT "Preprocessing to a file"
VERBATIM
)
If you wanted something more concise, you could use the generator expression example here, which gets the targets' include directories and expands them inline, within your custom target command. Something like this could work also:
add_custom_target(Bar ALL
COMMAND ${CMAKE_C_COMPILER} thing.cpp
"/I$<JOIN:$<TARGET_PROPERTY:LibraryA,INCLUDE_DIRECTORIES>,;/I>"
"/I$<JOIN:$<TARGET_PROPERTY:LibraryB,INCLUDE_DIRECTORIES>,;/I>"
/P
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}/Path/Here
COMMENT "Preprocessing to a file"
VERBATIM
COMMAND_EXPAND_LISTS
)
As the comment, the current accepted answer does not handle transitive dependencies. And this question has been confusing me all day, so I'll sort it out now.
I'm in build the LibraryLinkUtilities here. This is my CMakeLists.txt used in project:
cmake_minimum_required(VERSION 3.15.0)
project ("CMakeProject1")
set(LLU_ROOT "D:/test/LibraryLinkUtilities/install")
set(CMAKE_CONFIGURATION_TYPES "Debug;Release" CACHE STRING "" FORCE)
find_package(LLU NO_MODULE PATH_SUFFIXES LLU)
add_library(${PROJECT_NAME} SHARED ${PROJECT_NAME}.cpp)
target_link_libraries(${PROJECT_NAME} PRIVATE LLU::LLU)
When I open the .sln with Visual Studio, It work well, I mean I can build it in any build type. But I find the include directories is empty in Configuation. This make me crazy, because I want to know the project have include which directory exactly. Then I use the function print_target_properties fixed here to print all properties about imported target:
function(print_target_properties target)
if(NOT TARGET ${target})
message(STATUS "There is no target named '${target}'")
return()
endif()
foreach(property ${CMAKE_PROPERTY_LIST})
string(REPLACE "<CONFIG>" "DEBUG" property ${property})
get_property(was_set TARGET ${target} PROPERTY ${property} SET)
if(was_set)
get_target_property(value ${target} ${property})
message("${target} ${property} = ${value}")
endif()
endforeach()
endfunction()
print_target_properties(LLU::LLU)
Note the red line place, the LLU::LLU dependent with WSTP::WSTP and WolframLibrary::WolframLibrary. So I use this code to print all include directories:
include(CMakePrintHelpers)
get_target_property(LLUDEPENDS LLU::LLU INTERFACE_LINK_LIBRARIES)
cmake_print_properties(TARGETS LLU::LLU ${LLUDEPENDS} PROPERTIES INTERFACE_INCLUDE_DIRECTORIES)
I have created a C++ static library, and in order to make it searchable easily, I create the following cmake files:
lib.cmake
# The installation prefix configured by this project.
set(_IMPORT_PREFIX "C:/------/install/win32")
# Create imported target boost
add_library(lib STATIC IMPORTED)
set_target_properties(lib PROPERTIES
INTERFACE_COMPILE_DEFINITIONS "lib_define1;lib_define2"
INTERFACE_INCLUDE_DIRECTORIES "${_IMPORT_PREFIX}/../include"
)
# Load information for each installed configuration.
get_filename_component(_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH)
file(GLOB CONFIG_FILES "${_DIR}/lib-*.cmake")
foreach(f ${CONFIG_FILES})
include(${f})
endforeach()
lib-debug.cmake
# Import target "boost" for configuration "Debug"
set_property(TARGET lib APPEND PROPERTY IMPORTED_CONFIGURATIONS DEBUG)
set_target_properties(boost PROPERTIES
IMPORTED_LINK_INTERFACE_LANGUAGES_DEBUG "CXX"
IMPORTED_LOCATION_DEBUG "${_IMPORT_PREFIX}/Debug/staticlib/lib.lib"
)
When I want to use this library in an executable, I can simply invoke it by calling find_package command:
find_package(lib REQUIRED)
if(lib_FOUND)
message("lib has been found")
else()
message("lib cannot be found")
endif(boost_FOUND)
It works and if I want to know the head file directory of the library, I will have to call it this way:
get_target_property(lib_dir lib INTERFACE_INCLUDE_DIRECTORIES)
I was just wondering whether there are other ways of obtaining the properties of an target. In this case I expect some variable like lib_INCLUDE_DIRECTORIES will exist.
No, CMake does not automatically define variables for the properties of a target (or of anything else). If you need the value of a property, you have to query it explicitly (using get_property or the specific getters like get_target_property etc.).
In your specific case, INTERFACE_INCLUDE_DIRECTORIES is a property which I would expect you would not need to query at all. The whole point of INTERFACE_* properties is to propagate usage requirements automatically; their propagation is implemented in CMake itself.
I have a custom target that is in fact an externally generated library that I want to integrate in my build.
add_custom_command(
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/liblib2.a
COMMAND make -f ${CMAKE_CURRENT_SOURCE_DIR}/makefile liblib2.a)
add_custom_target(lib2
DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/liblib2.a)
How can I tell cmake that this target is in fact a library, where it can be found and where are the headers ?
To be clear : I don't want the upper CMakeList using this library having to manually specify include folders and the library location folder It must be done automatically (from the target properties).
On a standard cmake library I would just have to add the INTERFACE_INCLUDE_DIRECTORIES property in the library CMakeLists to make cmake link my app with the relevant -I and -L gcc parameters :
set_target_properties(lib1
PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES
${CMAKE_CURRENT_SOURCE_DIR})
But in the case of a custom target I don't know how to to it.
Any clue ?
Thanks for your help.
Thanks to zaufi it works!
For others who may be interested in embedded externally build target inside cmake here is what I did :
cmake_minimum_required(VERSION 2.8)
SET(LIB_FILE ${CMAKE_CURRENT_SOURCE_DIR}/bin/liblib2.a)
SET(LIB_HEADER_FOLDER ${CMAKE_CURRENT_SOURCE_DIR}/include)
# how to build the result of the library
add_custom_command(OUTPUT ${LIB_FILE}
COMMAND make
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
# create a target out of the library compilation result
add_custom_target(lib2_target DEPENDS ${LIB_FILE})
# create an library target out of the library compilation result
add_library(lib2 STATIC IMPORTED GLOBAL)
add_dependencies(lib2 lib2_target)
# specify where the library is and where to find the headers
set_target_properties(lib2
PROPERTIES
IMPORTED_LOCATION ${LIB_FILE}
INTERFACE_INCLUDE_DIRECTORIES ${LIB_HEADER_FOLDER})
Now in a CMakeLists.txt I can do somthing like
add_subdirectory(${ROOT_DIR}/lib1 bin/lib1)
add_subdirectory(${ROOT_DIR}/lib2 bin/lib2)
add_executable(app app.c )
target_link_libraries(app lib1 lib2)
No need to specify where the .a and the .h are.
You can use add_library() and tell that it actually imported. Then, using set_target_properties() you can set required INTERFACE_XXX properties for it. After that, you can use it as an ordinal target like every other built by your project.
Thank you for posting the solution. I have wrapped your snippet in a function:
function(add_external_library)
set(options)
set(oneValueArgs TARGET WORKING_DIRECTORY OUTPUT COMMENT)
set(multiValueArgs COMMAND INCLUDE_DIRS)
cmake_parse_arguments(ARGS "${options}" "${oneValueArgs}" ${multiValueArgs}" ${ARGN})
# Specify how to build the result of the library
add_custom_command(OUTPUT "${ARGS_OUTPUT}"
COMMAND ${ARGS_COMMAND}
WORKING_DIRECTORY "${ARGS_WORKING_DIRECTORY}"
COMMENT "${ARGS_COMMENT}")
# Create a target out of the library compilation result
add_custom_target(${ARGS_TARGET}_target DEPENDS ${ARGS_OUTPUT})
# Create an library target out of the library compilation result
add_library(${ARGS_TARGET} STATIC IMPORTED GLOBAL)
add_dependencies(${ARGS_TARGET} ${ARGS_TARGET}_target)
# Specify where the library is and where to find the headers
set_target_properties(${ARGS_TARGET}
PROPERTIES
IMPORTED_LOCATION "${ARGS_OUTPUT}"
INTERFACE_INCLUDE_DIRECTORIES "${ARGS_INCLUDE_DIRS}")
endfunction()
# Example
add_external_library(TARGET YourLib
COMMAND /bin/bash compile_your_lib.sh
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
OUTPUT "output/yourlib.a"
INCLUDE_DIRS "include/a" "include/b"
COMMENT "Building YourLib")
add_executable(YourExe)
target_link_libraries(YourExe YourLib)
My question is very similar to CMake : Changing name of Visual Studio and Xcode exectuables depending on configuration in a project generated by CMake. In that post the output file name will change according to the project configuration (Debug, Release and so on). I want to go further. When I know the configuration of the project, I want to tell the executable program to link different library names depending on project configurations. I was wondering whether there is a variable in CMake that can tell the project configuration. If there exists such a variable, my task will become easier:
if (Project_Configure_Name STREQUAL "Debug")
#do some thing
elseif (Project_Configure_Name STREQUAL "Release")
#do some thing
endif()
According to http://cmake.org/cmake/help/v2.8.8/cmake.html#command:target_link_libraries, you can specify libraries according to the configurations, for example:
target_link_libraries(mytarget
debug mydebuglibrary
optimized myreleaselibrary
)
Be careful that the optimized mode means every configuration that is not debug.
Following is a more complicated but more controllable solution:
Assuming you are linking to an imported library (not compiled in your cmake project), you can add it using:
add_library(foo STATIC IMPORTED)
set_property(TARGET foo PROPERTY IMPORTED_LOCATION_RELEASE c:/path/to/foo.lib)
set_property(TARGET foo PROPERTY IMPORTED_LOCATION_DEBUG c:/path/to/foo_d.lib)
add_executable(myexe src1.c src2.c)
target_link_libraries(myexe foo)
See http://www.cmake.org/Wiki/CMake/Tutorials/Exporting_and_Importing_Targets for more details.
There is always another way:
if(CMAKE_BUILD_TYPE MATCHES "release")
SET(CMAKE_BUILD_TYPE ${CMAKE_BUILD_TYPE})
else(CMAKE_BUILD_TYPE MATCHES "debug")
SET(CMAKE_BUILD_TYPE "debug")
endif(CMAKE_BUILD_TYPE MATCHES "release")
We can use the variable CMAKE_BUILD_TYPE. We can also change this variable at the beginning of invoking CMAKE:
cmake .. -DCMAKE_BUILD_TYPE:STRING=debug
Then we can use this variable as an indicator of build configuration.