Matplotlib - 10 x 10 matrix only populating last instance - numpy

I am trying to plot 100 random images from the notMNIST dataset in a 10x10 matrix, however only the last subplot is returning an image. Image data is stored in x, and labels in y.
import matplotlib.pyplot as plt
%matplotlib inline
num_subplots = 10
fig, ax = plt.subplots(nrows=num_subplots, ncols=num_subplots, figsize=(10, 6))
for idx in range(10):
n = np.random.randint(np.sum(y < 0), len(y))
imgl = x[n,:].reshape((28,28))
imshow(imgl, cmap = plt.get_cmap('gray'))
plt.show()

If you call plt.imshow(), the plot will always appear at the currently active subplot which, in your case, is the last subplot that has been created. Instead, you can loop over all subplots and call imshow() on the subplots themselves using the object oriented matplotlib syntax. As you generate an array of subplots, the subplots() function returns a 2d numpy array, wich you first need to convert into a 1D iterable, which you can achieve with the ravel() function. See the below code for a complete example.
import matplotlib.pyplot as plt
%matplotlib inline
num_subplots = 10
fig, axes = plt.subplots(nrows=num_subplots, ncols=num_subplots, figsize=(10, 6))
for idx,ax in enumerate(axes.ravel()):
n = np.random.randint(np.sum(y < 0), len(y))
imgl = x[n,:].reshape((28,28))
ax.imshow(imgl, cmap = plt.get_cmap('gray'))
plt.show()
Note that I renamed the original ax to axes to make it more apparent that you have many subplots (Axes instances). Note also that, if you want more control, you could loop over the rows and columns of your subplot arrangement separately. In this case you would use two for loops and access your subplots using axes[row,col], something like this:
for row in range(num_subplots):
for col in range(num_subplots):
#some code here
axes[row,col].imshow(...)
Hope this helps.

Related

Draw bar-charts with value_counts() for multiple columns in a Pandas DataFrame

I'm trying to draw bar-charts with counts of unique values for all columns in a Pandas DataFrame. Kind of what df.hist() does for numerical columns, but I have categorical columns.
I'd prefer to use the object-oriented approach, because if feels more natural and explicit to me.
I'd like to have multiple Axes (subplots) within a single Figure, in a grid fashion (again like what df.hist() does).
My solution below does exactly what I want, but it feels cumbersome. I doubt whether I really need the direct dependency on Matplotlib (and all the code for creating the Figure, removing the unused Axes etc.). I see that pandas.Series.plot has parameters subplots and layout which seem to point to what I want, but maybe I'm totally off here. I tried looping over the columns in my DataFrame and apply these parameters, but I cannot figure it out.
Does anyone know a more compact way to do what I'm trying to achieve?
# Defining the grid-dimensions of the Axes in the Matplotlib Figure
nr_of_plots = len(ames_train_categorical.columns)
nr_of_plots_per_row = 4
nr_of_rows = math.ceil(nr_of_plots / nr_of_plots_per_row)
# Defining the Matplotlib Figure and Axes
figure, axes = plt.subplots(nrows=nr_of_rows, ncols=nr_of_plots_per_row, figsize=(25, 50))
figure.subplots_adjust(hspace=0.5)
# Plotting on the Axes
i, j = 0, 0
for column_name in ames_train_categorical:
if ames_train_categorical[column_name].nunique() <= 30:
axes[i][j].set_title(column_name)
ames_train_categorical[column_name].value_counts().plot(kind='bar', ax=axes[i][j])
j += 1
if j % nr_of_plots_per_row == 0:
i += 1
j = 0
# Cleaning up unused Axes
# plt.subplots creates a square grid of Axes. On the last row, not all Axes will always be used. Unused Axes are removed here.
axes_flattened = axes.flatten()
for ax in axes_flattened:
if not ax.has_data():
ax.remove()
Edit: alternative idea
Using the pyplot/state-machine WoW, you could do it like this with very limited lines of code. But this also has the downside that every graph gets it's own figure, you they're not nicely arranged in a grid.
for column_name in ames_train_categorical:
ames_train_categorical[column_name].value_counts().plot(kind='bar')
plt.show()
Desired output
With the following toy dataframe:
import pandas as pd
df = pd.DataFrame(
{
"MS Zoning": ["RL", "FV", "RL", "RH", "RL", "RL"],
"Street": ["Pave", "Pave", "Pave", "Grvl", "Pave", "Pave"],
"Alley": ["Grvl", "Grvl", "Grvl", "Grvl", "Pave", "Pave"],
"Utilities": ["AllPub", "NoSewr", "AllPub", "AllPub", "NoSewr", "AllPub"],
"Land Slope": ["Gtl", "Mod", "Sev", "Mod", "Sev", "Sev"],
}
)
Here is a bit more idiomatic way to do it:
import math
from matplotlib import pyplot as plt
size = math.ceil(df.shape[1]** (1/2))
fig = plt.figure()
for i, col in enumerate(df.columns):
fig.add_subplot(size, size, i + 1)
df[col].value_counts().plot(kind="bar", ax=plt.gca(), title=col, rot=0)
fig.tight_layout()

Combine two matplotlib Figures, side by side, high quality

I produced two matplotlib Figures, at size of 1000x1000.
Each of the figures is 4x4 subplots based figure.
I want one figure at size of 1000x2000 (width is 2000).
fig1
<Figure size 1000x1000 with 4 Axes>
fig2
<Figure size 1000x1000 with 4 Axes>
Now I want to combine them together.
I've searched many references:
How to make two plots side-by-side using Python?
Plotting two figures side by side
Adding figures to subplots in Matplotlib
They are not relevant because mostly they suggest to change the way the initial plots were created. I don't want to change it - I want to use the Figure as is.
I just need to place Fig1 to the left of Fig2. Not changing the way Fig1 or Fig2 were created.
I also tried using PIL method: https://note.nkmk.me/en/python-pillow-concat-images/
However it was lower quality
You can render your figures to arrays using the agg backend.
Then concat the arrays side by side and switch back to your normal backend to show the result:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
backend = mpl.get_backend()
mpl.use('agg')
dpi = 100
fig1,_ = plt.subplots(2,2, figsize=(1000/dpi, 1000/dpi), dpi=dpi)
fig1.suptitle('Figure 1')
fig2,_ = plt.subplots(2,2, figsize=(1000/dpi, 1000/dpi), dpi=dpi)
fig2.suptitle('Figure 2')
c1 = fig1.canvas
c2 = fig2.canvas
c1.draw()
c2.draw()
a1 = np.array(c1.buffer_rgba())
a2 = np.array(c2.buffer_rgba())
a = np.hstack((a1,a2))
mpl.use(backend)
fig,ax = plt.subplots(figsize=(2000/dpi, 1000/dpi), dpi=dpi)
fig.subplots_adjust(0, 0, 1, 1)
ax.set_axis_off()
ax.matshow(a)
Not directly merging two seperate figures, but I succeeded achieving the final goal by using this reference:
https://matplotlib.org/devdocs/gallery/subplots_axes_and_figures/subfigures.html
That's the code I needed:
fig = plt.figure(constrained_layout=True, figsize=(20, 11))
titles_size = 25
labels_size = 18
subfigs = fig.subfigures(1, 2, wspace=0.02)
subfigs[0].suptitle('Title 1', fontsize=titles_size)
subfigs[1].suptitle('Title 2', fontsize=titles_size)
axsLeft = subfigs[0].subplots(2, 2)
axsRight = subfigs[1].subplots(2, 2)
for ax_idx, ax in enumerate(axsLeft.reshape(-1)):
ax.grid(False)
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.axes.xaxis.set_visible(False)
ax.axes.yaxis.set_visible(False)
for ax_idx, ax in enumerate(axsRight.reshape(-1)):
ax.grid(False)
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.axes.xaxis.set_visible(False)
ax.axes.yaxis.set_visible(False)
plt.show()

Multiple different kinds of plots on a single figure and save it to a video

I am trying to plot multiple different plots on a single matplotlib figure with in a for loop. At the moment it is all good in matlab as shown in the picture below and then am able to save the figure as a video frame. Here is a link of a sample video generated in matlab for 10 frames
In python, tried it as below
import matplotlib.pyplot as plt
for frame in range(FrameStart,FrameEnd):#loop1
# data generation code within a for loop for n frames from source video
array1 = np.zeros((200, 3800))
array2 = np.zeros((19,2))
array3 = np.zeros((60,60))
for i in range(len(array2)):#loop2
#generate data for arrays 1 to 3 from the frame data
#end loop2
plt.subplot(6,1,1)
plt.imshow(DataArray,cmap='gray')
plt.subplot(6, 1, 2)
plt.bar(data2D[:,0], data2D[:,1])
plt.subplot(2, 2, 3)
plt.contourf(mapData)
# for fourth plot, use array2[3] and array2[5], plot it as shown and keep the\is #plot without erasing for next frame
not sure how to do the 4th axes with line plots. This needs to be there (done using hold on for this axis in matlab) for the entire sequence of frames processing in the for loop while the other 3 axes needs to be erased and updated with new data for each frame in the movie. The contour plot needs to be square all the time with color bar on the side. At the end of each frame processing, once all the axes are updated, it needs to be saved as a frame of a movie. Again this is easily done in matlab, but not sure in python.
Any suggestions
thanks
I guess you need something like this format.
I have used comments # in code to answer your queries. Please check the snippet
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(6,6))
ax1=fig.add_subplot(311) #3rows 1 column 1st plot
ax2=fig.add_subplot(312) #3rows 1 column 2nd plot
ax3=fig.add_subplot(325) #3rows 2 column 5th plot
ax4=fig.add_subplot(326) #3rows 2 column 6th plot
plt.show()
To turn off ticks you can use plt.axis('off'). I dont know how to interpolate your format so left it blank . You can adjust your figsize based on your requirements.
import numpy as np
from numpy import random
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(6,6)) #First is width Second is height
ax1=fig.add_subplot(311)
ax2=fig.add_subplot(312)
ax3=fig.add_subplot(325)
ax4=fig.add_subplot(326)
#Bar Plot
langs = ['C', 'C++', 'Java', 'Python', 'PHP']
students = [23,17,35,29,12]
ax2.bar(langs,students)
#Contour Plot
xlist = np.linspace(-3.0, 3.0, 100)
ylist = np.linspace(-3.0, 3.0, 100)
X, Y = np.meshgrid(xlist, ylist)
Z = np.sqrt(X**2 + Y**2)
cp = ax3.contourf(X, Y, Z)
fig.colorbar(cp,ax=ax3) #Add a colorbar to a plot
#Multiple line plot
x = np.linspace(-1, 1, 50)
y1 = 2*x + 1
y2 = 2**x + 1
ax4.plot(x, y2)
ax4.plot(x, y1, color='red',linewidth=1.0)
plt.tight_layout() #Make sures plots dont overlap
plt.show()

pandas subplot, split into rows [duplicate]

I have a few Pandas DataFrames sharing the same value scale, but having different columns and indices. When invoking df.plot(), I get separate plot images. what I really want is to have them all in the same plot as subplots, but I'm unfortunately failing to come up with a solution to how and would highly appreciate some help.
You can manually create the subplots with matplotlib, and then plot the dataframes on a specific subplot using the ax keyword. For example for 4 subplots (2x2):
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
df1.plot(ax=axes[0,0])
df2.plot(ax=axes[0,1])
...
Here axes is an array which holds the different subplot axes, and you can access one just by indexing axes.
If you want a shared x-axis, then you can provide sharex=True to plt.subplots.
You can see e.gs. in the documentation demonstrating joris answer. Also from the documentation, you could also set subplots=True and layout=(,) within the pandas plot function:
df.plot(subplots=True, layout=(1,2))
You could also use fig.add_subplot() which takes subplot grid parameters such as 221, 222, 223, 224, etc. as described in the post here. Nice examples of plot on pandas data frame, including subplots, can be seen in this ipython notebook.
You can plot multiple subplots of multiple pandas data frames using matplotlib with a simple trick of making a list of all data frame. Then using the for loop for plotting subplots.
Working code:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# dataframe sample data
df1 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df2 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df3 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df4 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df5 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df6 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
#define number of rows and columns for subplots
nrow=3
ncol=2
# make a list of all dataframes
df_list = [df1 ,df2, df3, df4, df5, df6]
fig, axes = plt.subplots(nrow, ncol)
# plot counter
count=0
for r in range(nrow):
for c in range(ncol):
df_list[count].plot(ax=axes[r,c])
count+=1
Using this code you can plot subplots in any configuration. You need to define the number of rows nrow and the number of columns ncol. Also, you need to make list of data frames df_list which you wanted to plot.
You can use the familiar Matplotlib style calling a figure and subplot, but you simply need to specify the current axis using plt.gca(). An example:
plt.figure(1)
plt.subplot(2,2,1)
df.A.plot() #no need to specify for first axis
plt.subplot(2,2,2)
df.B.plot(ax=plt.gca())
plt.subplot(2,2,3)
df.C.plot(ax=plt.gca())
etc...
You can use this:
fig = plt.figure()
ax = fig.add_subplot(221)
plt.plot(x,y)
ax = fig.add_subplot(222)
plt.plot(x,z)
...
plt.show()
You may not need to use Pandas at all. Here's a matplotlib plot of cat frequencies:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)
f, axes = plt.subplots(2, 1)
for c, i in enumerate(axes):
axes[c].plot(x, y)
axes[c].set_title('cats')
plt.tight_layout()
Option 1: Create subplots from a dictionary of dataframes with long (tidy) data
Assumptions:
There is a dictionary of multiple dataframes of tidy data that are either:
Created by reading in from files
Created by separating a single dataframe into multiple dataframes
The categories, cat, may be overlapping, but all dataframes don't necessarily contain all values of cat
hue='cat'
This example uses a dict of dataframes, but a list of dataframes would be similar.
If the dataframes are wide, use pandas.DataFrame.melt to convert them to long form.
Because dataframes are being iterated through, there's no guarantee that colors will be mapped the same for each plot
A custom color map needs to be created from the unique 'cat' values for all the dataframes
Since the colors will be the same, place one legend to the side of the plots, instead of a legend in every plot
Tested in python 3.10, pandas 1.4.3, matplotlib 3.5.1, seaborn 0.11.2
Imports and Test Data
import pandas as pd
import numpy as np # used for random data
import matplotlib.pyplot as plt
from matplotlib.patches import Patch # for custom legend - square patches
from matplotlib.lines import Line2D # for custom legend - round markers
import seaborn as sns
import math import ceil # determine correct number of subplot
# synthetic data
df_dict = dict()
for i in range(1, 7):
np.random.seed(i) # for repeatable sample data
data_length = 100
data = {'cat': np.random.choice(['A', 'B', 'C'], size=data_length),
'x': np.random.rand(data_length), 'y': np.random.rand(data_length)}
df_dict[i] = pd.DataFrame(data)
# display(df_dict[1].head())
cat x y
0 B 0.944595 0.606329
1 A 0.586555 0.568851
2 A 0.903402 0.317362
3 B 0.137475 0.988616
4 B 0.139276 0.579745
# display(df_dict[6].tail())
cat x y
95 B 0.881222 0.263168
96 A 0.193668 0.636758
97 A 0.824001 0.638832
98 C 0.323998 0.505060
99 C 0.693124 0.737582
Create color mappings and plot
# create color mapping based on all unique values of cat
unique_cat = {cat for v in df_dict.values() for cat in v.cat.unique()} # get unique cats
colors = sns.color_palette('tab10', n_colors=len(unique_cat)) # get a number of colors
cmap = dict(zip(unique_cat, colors)) # zip values to colors
col_nums = 3 # how many plots per row
row_nums = math.ceil(len(df_dict) / col_nums) # how many rows of plots
# create the figue and axes
fig, axes = plt.subplots(row_nums, col_nums, figsize=(9, 6), sharex=True, sharey=True)
# convert to 1D array for easy iteration
axes = axes.flat
# iterate through dictionary and plot
for ax, (k, v) in zip(axes, df_dict.items()):
sns.scatterplot(data=v, x='x', y='y', hue='cat', palette=cmap, ax=ax)
sns.despine(top=True, right=True)
ax.legend_.remove() # remove the individual plot legends
ax.set_title(f'dataset = {k}', fontsize=11)
fig.tight_layout()
# create legend from cmap
# patches = [Patch(color=v, label=k) for k, v in cmap.items()] # square patches
patches = [Line2D([0], [0], marker='o', color='w', markerfacecolor=v, label=k, markersize=8) for k, v in cmap.items()] # round markers
# place legend outside of plot; change the right bbox value to move the legend up or down
plt.legend(title='cat', handles=patches, bbox_to_anchor=(1.06, 1.2), loc='center left', borderaxespad=0, frameon=False)
plt.show()
Option 2: Create subplots from a single dataframe with multiple separate datasets
The dataframes must be in a long form with the same column names.
This option uses pd.concat to combine multiple dataframes into a single dataframe, and .assign to add a new column.
See Import multiple csv files into pandas and concatenate into one DataFrame for creating a single dataframes from a list of files.
This option is easier because it doesn't require manually mapping colors to 'cat'
Combine DataFrames
# using df_dict, with dataframes as values, from the top
# combine all the dataframes in df_dict to a single dataframe with an identifier column
df = pd.concat((v.assign(dataset=k) for k, v in df_dict.items()), ignore_index=True)
# display(df.head())
cat x y dataset
0 B 0.944595 0.606329 1
1 A 0.586555 0.568851 1
2 A 0.903402 0.317362 1
3 B 0.137475 0.988616 1
4 B 0.139276 0.579745 1
# display(df.tail())
cat x y dataset
595 B 0.881222 0.263168 6
596 A 0.193668 0.636758 6
597 A 0.824001 0.638832 6
598 C 0.323998 0.505060 6
599 C 0.693124 0.737582 6
Plot a FacetGrid with seaborn.relplot
sns.relplot(kind='scatter', data=df, x='x', y='y', hue='cat', col='dataset', col_wrap=3, height=3)
Both options create the same result, however, it's less complicated to combine all the dataframes, and plot a figure-level plot with sns.relplot.
Building on #joris response above, if you have already established a reference to the subplot, you can use the reference as well. For example,
ax1 = plt.subplot2grid((50,100), (0, 0), colspan=20, rowspan=10)
...
df.plot.barh(ax=ax1, stacked=True)
Here is a working pandas subplot example, where modes is the column names of the dataframe.
dpi=200
figure_size=(20, 10)
fig, ax = plt.subplots(len(modes), 1, sharex="all", sharey="all", dpi=dpi)
for i in range(len(modes)):
ax[i] = pivot_df.loc[:, modes[i]].plot.bar(figsize=(figure_size[0], figure_size[1]*len(modes)),
ax=ax[i], title=modes[i], color=my_colors[i])
ax[i].legend()
fig.suptitle(name)
import numpy as np
import pandas as pd
imoprt matplotlib.pyplot as plt
fig, ax = plt.subplots(2,2)
df = pd.DataFrame({'A':np.random.randint(1,100,10),
'B': np.random.randint(100,1000,10),
'C':np.random.randint(100,200,10)})
for ax in ax.flatten():
df.plot(ax =ax)

Mutiple plots in a single window

I need to draw many such rows (for a0 .. a128) in a single window. I've searched in FacetGrid, PairGrid and all over around but couldn't find. Only regplot has similar argument ax but it doesn't plot histograms. My data is 128 real valued features with label column [0, 1]. I need the graphs to be shown from my Python code as a separate application on Linux.
Also, it there a way to scale this histogram to show relative values on Y such that the right curve is not skewed?
g = sns.FacetGrid(df, col="Result")
g.map(plt.hist, "a0", bins=20)
plt.show()
Just a simple example using matplotlib. The code is not optimized (ugly, but simple plot-indexing):
import numpy as np
import matplotlib.pyplot as plt
N = 5
data = np.random.normal(size=(N*N, 1000))
f, axarr = plt.subplots(N, N) # maybe you want sharex=True, sharey=True
pi = [0,0]
for i in range(data.shape[0]):
if pi[1] == N:
pi[0] += 1 # next row
pi[1] = 0 # first column again
axarr[pi[0], pi[1]].hist(data[i], normed=True) # i was wrong with density;
# normed=True should be used
pi[1] += 1
plt.show()
Output: