Im calculating weighted mean for many columns using pandas. In some cases weight can sum to zero so i use np.ma.average:
import pandas as pd
import numpy as np
df = pd.DataFrame.from_dict(dict([('ID', [1, 1, 1]),('HeightA', [1, 2, 3]), ('WeightA', [0, 0, 0]),('HeightB', [2, 4, 6]), ('WeightB', [1, 2, 4])]))
>>df
ID HeightA WeightA HeightB WeightB
0 1 1 0 2 1
1 1 2 0 4 2
2 1 3 0 6 4
wmA = lambda x: np.ma.average(x, weights=df.loc[x.index, "WeightA"])
wmB = lambda x: np.ma.average(x, weights=df.loc[x.index, "WeightB"])
f = {'HeightA':wmA,'HeightB':wmB}
df2 = df.groupby(['ID'])['HeightA','HeightB'].agg(f)
This works but i have many columns of height and weights so i dont want to have to write a lambda function for each one so i try:
def givewm(data,weightcolumn):
return np.ma.average(data, weights=data.loc[data.index, weightcolumn])
f = {'HeightA':givewm(df,'WeightA'),'HeightB':givewm(df,'WeightB')}
df2 = df.groupby(['ID'])['HeightA','HeightB'].agg(f)
Which give error: builtins.TypeError: Axis must be specified when shapes of a and weights differ.
How can i write a function which returns weighted mean with weight column name as input?
Use double nested functions, solution from github:
df = (pd.DataFrame.from_dict(dict([('ID', [1, 1, 1]),
('HeightA', [1, 2, 3]),
('WeightA', [10, 20, 30]),
('HeightB', [2, 4, 6]),
('WeightB', [1, 2, 4])])))
print (df)
ID HeightA WeightA HeightB WeightB
0 1 1 10 2 1
1 1 2 20 4 2
2 1 3 30 6 4
def givewm(weightcolumn):
def f1(x):
return np.ma.average(x, weights=df.loc[x.index, weightcolumn])
return f1
f = {'HeightA':givewm('WeightA'),'HeightB':givewm('WeightB')}
df2 = df.groupby('ID').agg(f)
print (df2)
HeightA HeightB
ID
1 2.333333 4.857143
Verify solution:
wmA = lambda x: np.ma.average(x, weights=df.loc[x.index, "WeightA"])
wmB = lambda x: np.ma.average(x, weights=df.loc[x.index, "WeightB"])
f = {'HeightA':wmA,'HeightB':wmB}
df2 = df.groupby(['ID'])['HeightA','HeightB'].agg(f)
print (df2)
HeightA HeightB
ID
1 2.333333 4.857143
Related
I have an NumPy array of good animals, and a DataFrame of people with a list of animals they own.
good_animals = np.array(['Owl', 'Dragon', 'Shark', 'Cat', 'Unicorn', 'Penguin'])
data = {
> 'People': [1, 2, 3, 4, 5],
> 'Animals': [['Owl'], ['Owl', 'Dragon'], ['Dog', 'Human'], ['Unicorn', 'Pitbull'], []],
> }
df = pd.DataFrame(data)
I want to add another column to my DataFrame, showing all the good animals that person owns.
The following gives me a Series showing whether or not each animal is a good animal.
df['Animals'].apply(lambda x: np.isin(x, good_animals))
But I want to see the actual good animals, not just booleans.
You can use intersection of sets from lists:
df['new'] = df['Animals'].apply(lambda x: list(set(x).intersection(good_animals)))
print (df)
People Animals new
0 1 [Owl] [Owl]
1 2 [Owl, Dragon] [Dragon, Owl]
2 3 [Dog, Human] []
3 4 [Unicorn, Pitbull] [Unicorn]
4 5 [] []
If possible duplciated values or if order is important use list comprehension:
s = set(good_animals)
df['new'] = df['Animals'].apply(lambda x: [y for y in x if y in s])
print (df)
People Animals new
0 1 [Owl] [Owl]
1 2 [Owl, Dragon] [Owl, Dragon]
2 3 [Dog, Human] []
3 4 [Unicorn, Pitbull] [Unicorn]
4 5 [] []
I`m not very sure if I understood well your questions. Why are you using np.array? You can try this:
good_animals = ['Owl', 'Dragon', 'Shark', 'Cat', 'Unicorn', 'Penguin']
import pandas as pd
df_dict = {
'People':["1","2","3","4","5"],
'Animals':[['Owl'],['Owl', 'Dragon'], ['Dog', 'Human'], ['Unicorn', 'Pitbull'],[]],
'Good_animals': [None, None, None,None,None]
}
df = pd.DataFrame(df_dict)
for x in range(df.shape[0]):
row = x
df.Good_animals.iloc[x] = ', ' .join([y for y in df.Animals.iloc[row] if y in good_animals])
The result:
People Animals Good_animals
0 1 [Owl] Owl
1 2 [Owl, Dragon] Owl, Dragon
2 3 [Dog, Human]
3 4 [Unicorn, Pitbull] Unicorn
4 5 []
I have the following series x and y:
x = pd.Series(['a', 'b', 'a', 'c', 'c'], name='x')
y = pd.Series([1, 0, 1, 0, 0], name='y')
I call pd.crosstab to get the following dataframe as output:
pd.crosstab(x, y)
Output:
y 0 1
x
a 0 2
b 1 0
c 2 0
I want to transform this into a single series as follows:
x_a_y_0 0
x_a_y_1 2
x_b_y_0 1
x_b_y_1 0
x_c_y_0 2
x_c_y_1 0
For a specific dataframe like this one, I can construct this by visual inspection:
pd.Series(
dict(
x_a_y_0=0,
x_a_y_1=2,
x_b_y_0=1,
x_b_y_1=0,
x_c_y_0=2,
x_c_y_1=0
)
)
But given arbitrary series x and y, how do I generate the corresponding final output?
Use DataFrame.stack with change MultiIndex by map:
s = pd.crosstab(x, y).stack()
s.index = s.index.map(lambda x: f'x_{x[0]}_y_{x[1]}')
print (s)
x_a_y_0 0
x_a_y_1 2
x_b_y_0 1
x_b_y_1 0
x_c_y_0 2
x_c_y_1 0
dtype: int64
Also is possible pass s.index.names, thank you #SeaBean:
s.index = s.index.map(lambda x: f'{s.index.names[0]}_{x[0]}_{s.index.names[1]}_{x[1]}')
I have two tables
import pandas as pd
import numpy as np
df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
columns=['a', 'b', 'c'])
df1 = pd.DataFrame(np.array([[1, 2, 4], [4, 5, 6], [7, 8, 9]]),
columns=['a', 'b', 'c'])
print(df1.equals(df2))
I want to compare them. I want the same result if I would use function df.compare(df1) or at least something close to it. Can't use above fnction as my complier states that 'DataFrame' object has no attribute 'compare'
First approach:
Let's compare value by value:
In [1183]: eq_df = df1.eq(df2)
In [1196]: eq_df
Out[1200]:
a b c
0 True True False
1 True True True
2 True True True
Then let's reduce it down to see which rows are equal for all columns
from functools import reduce
In [1285]: eq_ser = reduce(np.logical_and, (eq_df[c] for c in eq_df.columns))
In [1288]: eq_ser
Out[1293]:
0 False
1 True
2 True
dtype: bool
Now we can print out the rows which are not equal
In [1310]: df1[~eq_ser]
Out[1315]:
a b c
0 1 2 4
In [1316]: df2[~eq_ser]
Out[1316]:
a b c
0 1 2 3
Second approach:
def diff_dataframes(
df1, df2, compare_cols=None
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""
Given two dataframes and column(s) to compare, return three dataframes with rows:
- common between the two dataframes
- found only in the left dataframe
- found only in the right dataframe
"""
df1 = df1.fillna(pd.NA)
df = df1.merge(df2.fillna(pd.NA), how="outer", on=compare_cols, indicator=True)
df_both = df.loc[df["_merge"] == "both"].drop(columns="_merge")
df_left = df.loc[df["_merge"] == "left_only"].drop(columns="_merge")
df_right = df.loc[df["_merge"] == "right_only"].drop(columns="_merge")
tup = namedtuple("df_diff", ["common", "left", "right"])
return tup(df_both, df_left, df_right)
Usage:
In [1366]: b, l, r = diff_dataframes(df1, df2)
In [1371]: l
Out[1371]:
a b c
0 1 2 4
In [1372]: r
Out[1372]:
a b c
3 1 2 3
Third approach:
In [1440]: eq_ser = df1.eq(df2).sum(axis=1).eq(len(df1.columns))
My goal is to get joint probability (here we use count for example) matrix from data samples. Now I can get the expected result, but I'm wondering how to optimize it. Here is my implementation:
def Fill2DCountTable(arraysList):
'''
:param arraysList: List of arrays, length=2
each array is of shape (k, sampleSize),
k == 1 (or None. numpy will align it) if it's single variable
else k for a set of variables of size k
:return: xyJointCounts, xMarginalCounts, yMarginalCounts
'''
jointUniques, jointCounts = np.unique(np.vstack(arraysList), axis=1, return_counts=True)
_, xReverseIndexs = np.unique(jointUniques[[0]], axis=1, return_inverse=True) ###HIGHLIGHT###
_, yReverseIndexs = np.unique(jointUniques[[1]], axis=1, return_inverse=True)
xyJointCounts = np.zeros((xReverseIndexs.max() + 1, yReverseIndexs.max() + 1), dtype=np.int32)
xyJointCounts[tuple(np.vstack([xReverseIndexs, yReverseIndexs]))] = jointCounts
xMarginalCounts = np.sum(xyJointCounts, axis=1) ###HIGHLIGHT###
yMarginalCounts = np.sum(xyJointCounts, axis=0)
return xyJointCounts, xMarginalCounts, yMarginalCounts
def Fill3DCountTable(arraysList):
# :param arraysList: List of arrays, length=3
jointUniques, jointCounts = np.unique(np.vstack(arraysList), axis=1, return_counts=True)
_, xReverseIndexs = np.unique(jointUniques[[0]], axis=1, return_inverse=True)
_, yReverseIndexs = np.unique(jointUniques[[1]], axis=1, return_inverse=True)
_, SReverseIndexs = np.unique(jointUniques[2:], axis=1, return_inverse=True)
SxyJointCounts = np.zeros((SReverseIndexs.max() + 1, xReverseIndexs.max() + 1, yReverseIndexs.max() + 1), dtype=np.int32)
SxyJointCounts[tuple(np.vstack([SReverseIndexs, xReverseIndexs, yReverseIndexs]))] = jointCounts
SMarginalCounts = np.sum(SxyJointCounts, axis=(1, 2))
SxJointCounts = np.sum(SxyJointCounts, axis=2)
SyJointCounts = np.sum(SxyJointCounts, axis=1)
return SxyJointCounts, SMarginalCounts, SxJointCounts, SyJointCounts
My use scenario is to do conditional independence test over variables. SampleSize is usually quite big (~10k) and each variable's categorical cardinality is relatively small (~10). I still find the speed not satisfying.
How to best optimize this code, or even logic outside the code? I may have some thoughts:
The ###HIGHLIGHT### lines. On a single X I may calculate (X;Y1), (Y2;X), (X;Y3|S1)... for many times, so what if I save cache variable's (and conditional set's) {uniqueValue: reversedIndex} dictionary and its marginal count, and then directly get marginalCounts (no need to sum) and replace to get reverseIndexs (no need to unique).
How to further use matrix parallelization to do CITest in batch, i.e. calculate (X;Y|S1), (X;Y|S2), (X;Y|S3)... simultaneously?
Will torch be faster than numpy, on same CPU? Or on GPU?
It's an open question. Thank you for any possible ideas. Big thanks for your help :)
================== A test example is as follows ==================
xs = np.array( [2, 4, 2, 3, 3, 1, 3, 1, 2, 1] )
ys = np.array( [5, 5, 5, 4, 4, 4, 4, 4, 6, 5] )
Ss = np.array([ [1, 0, 0, 0, 1, 0, 0, 0, 1, 1],
[1, 1, 1, 0, 1, 0, 1, 0, 1, 0] ])
xyJointCounts, xMarginalCounts, yMarginalCounts = Fill2DCountTable([xs, ys])
SxyJointCounts, SMarginalCounts, SxJointCounts, SyJointCounts = Fill3DCountTable([xs, ys, Ss])
get 2D from (X;Y): xMarginalCounts=[3 3 3 1], yMarginalCounts=[5 4 1], and xyJointCounts (added axes name FYI):
xy| 4 5 6
--|-------
1 | 2 1 1
2 | 0 2 1
3 | 3 0 0
4 | 0 1 0
get 3D from (X;Y|{Z1,Z2}): SxyJointCounts is of shape 4x4x3, where the first 4 means the cardinality of {Z1,Z2} (00, 01, 10, 11 with respective SMarginalCounts=[3 3 1 3]). SxJointCounts is of shape 4x4 and SyJointCounts is of shape 4x3.
I have a dataframe in which the second column is an array. I have an another dataframe which has 2 columns, from which the value has to be updated in the first dataframe.
I already tried using update, explode, map, assign method.
df = pd.DataFrame({'Account': ['A1','A2','A3']})
groups = np.array([['g1','g2'],['g3','g4'],['g1','g2','g3']])
df["Group"] = groups.tolist()
key_values = pd.DataFrame({'ID': ['1','2','3','4','5'],'Group': ['g1','g2','g3','g4','g5']})
keys = key_values.set_index('Key')['ID']
ag = Accounts_Group.explode('Group')
Setup
m = key_values.set_index('Group')['ID']
Option 1
explode + map
f = df.explode('Group')
res = f['Group'].map(m).groupby(level=0).agg(list)
0 [1, 2]
1 [3, 4]
2 [1, 2, 3]
Name: Group, dtype: object
Option 2
List comprehension + map
res = [[*map(m.get, el)] for el in df['Group']]
[['1', '2'], ['3', '4'], ['1', '2', '3']]
To assign it back:
df.assign(Group=res)
Account Group
0 A1 [1, 2]
1 A2 [3, 4]
2 A3 [1, 2, 3]
Firstly convert them to strings and replace them. Then you can convert them to list again from string using ast
import ast
df['keys']=df.astype(str).replace(to_replace=list(key_values['Group']),value=list(key_values['ID']),regex=True)['Group']
df['keys']=df['keys'].apply(lambda x: ast.literal_eval(x))
print(df)
Account Group keys
0 A1 [g1, g2] [1, 2]
1 A2 [g3, g4] [3, 4]
2 A3 [g1, g2, g3] [1, 2, 3]