Wordcloud using matplotlib is not showing - matplotlib

For my code, please see below:
#tfids words word cloud
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import pandas as pd
tf = pd.DataFrame(columns=['word'])
tf['word'] = ['federalist', 'wrexham', 'remy', 'islamic', 'hegseth', 'hereford', 'gbt', 'sharenet', 'cpr', 'vegas', 'krvn', 'bandidos', 'nginx', 'manafort' , 'roth', 'kennedy' ,'pence', 'quantum']
wordcloud10 = WordCloud().generate(' '.join(tf['word']))
plt.imshow(wordcloud10)
plt.axis("off")
plt.title("")
plt.show()
display()
In databricks, one has to use display to see a chart. Despite the above code, I don't see a wordcloud. The O/p i see as below:
Out[1106]: <matplotlib.image.AxesImage at 0x7fae917806d0>
Out[1106]: (-0.5, 399.5, 199.5, -0.5)
Out[1106]: <matplotlib.text.Text at 0x7faeb31a6110>
Thanks for your help.
Screenshot from Databricks - No Chart

Related

BoxPlot figure is not showing( just getting <AxesSubplot:>)

I am already having Tkinter(someone said to install a tkinter)
code used:
imports are:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
if u want to view the data-set then it is :
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/diabetes.csv")
code used to plot boxplot in jupyter notebook
fig, ax = plt.subplots(figsize = (20,20))
sns.boxplot(data = df,ax = ax)
)
I was supposed to add in my import's
%matplotlib inline

matplotlib code does not shows anything on output

I am following this here: https://matplotlib.org/users/image_tutorial.html
The code is this:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
img = mpimg.imread('1.jpg')
I am trying to output something, but when I execute the code, I get nothing... Shouldn't I get a matrix as output?

Blank Bokeh plot when reading data from dataframe and using time on x-axis

I am unable to display plot using Bokeh. I am reading the data from dataframe. Here's a snippet of my Python code.
I am new to Bokeh. I tried following some of the examples from the User Guide. I'm unable to figure out what's going wrong here. Please advise.
import datetime
import pandas
from bokeh.plotting import figure, show, output_file, output_notebook
from bokeh.models import ColumnDataSource
PATH_TO_CSV = "Sample_Data.csv"
output_notebook()
data = pd.read_csv(PATH_TO_CSV, index_col=False)
data['timestamp'] = pd.to_datetime(data['timestamp']).dt.strftime("%H:%M:%S")
source = ColumnDataSource(data)
p = figure(plot_width=400, plot_height=400, x_axis_type="datetime")
p.line('timestamp', 'event_msg', source=source)
show(p)
Here's sample .csv
event_msg,timestamp
Created,2019-03-02 13:19:44.164562-0700
Created,2019-03-02 13:20:32.212323-0700
Created,2019-03-02 13:20:56.582761-0700
Modified,2019-03-02 13:21:48.021752-0700
Deleted,2019-03-02 13:22:16.938382-0700
Modified,2019-03-02 13:22:22.139714-0700
Permission changed,2019-03-02 13:24:20.195975-0700
Deleted,2019-03-02 13:33:53.049900-0700
Modified,2019-03-02 13:33:56.266113-0700
Deleted,2019-03-02 13:33:59.757584-0700
I am seeing completely blank plot. Ideally, I am interested in plotting different line plots based on the event messages.
You should convert your time like this:
data['timestamp'] = pd.to_datetime(data['timestamp'])
So your code should look like (tested with Bokeh v1.1.0):
import os
import datetime
import pandas as pd
from bokeh.plotting import figure, show, output_file, output_notebook
from bokeh.models import ColumnDataSource
PATH_TO_CSV = "Sample_Data.csv"
output_notebook()
data = pd.read_csv(os.path.join(os.path.dirname(__file__), PATH_TO_CSV), index_col = False)
data['timestamp'] = pd.to_datetime(data['timestamp'])
source = ColumnDataSource(data)
p = figure(plot_width = 400, plot_height = 400, x_axis_type = "datetime", y_range = data['event_msg'].unique())
p.line('timestamp', 'event_msg', source = source)
show(p)
Result:

Matplotlib figure not showing up in output widget in first cell of Jupyter notebook

I have the following snippet in the first cell of a Jupyter notebook:
import matplotlib.pyplot as plt
import pandas as pd
import ipywidgets as widgets
import numpy as np
out = widgets.Output()
data = pd.DataFrame(np.random.normal(size = 50))
plt.ioff()
with out:
fig, axes = plt.subplots()
data.hist(ax = axes)
display(fig)
plt.ion()
display(out)
If I restart the kernel and run this first cell, I see this output:
<Figure size 640x480 with 1 Axes>
However, if I run this first cell a second time, I see a matplotlib figure as I intended. This behavior also shows up if I move everything after the import of matplotlib to a second cell, restart the kernel, and rerun the entire notebook.
Is this difference in behavior intentional?
The code rearranging and adding magic command '%matplotlib notebook' work for me.
%matplotlib notebook
import matplotlib.pyplot as plt
import pandas as pd
import ipywidgets as widgets
import numpy as np
out = widgets.Output()
plt.ioff()
fig, axes = plt.subplots()
plt.ion()
data = pd.DataFrame(np.random.normal(size = 50))
data.hist(ax = axes)
display(out)
with out:
display(fig)

Circular dot on matplotlib barh graph

import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame({'y':['a','b','c','d','e','f','g','h','i']\
,'x':[10,9,9,8,7,6,10,6,7]})
df.sort_values(by='x',inplace=True,ascending = True)
plt.barh(bottom=list(range(1,10)), width=df.x, height = 0.15, align='center',color = 'blue')
plt.xlim([0,11])
plt.yticks(list(range(1,10)),skills.y)
plt.show()
This code gives me a horizontal bar graph.
I want to add a circular dot at the edge of each bars.
Can someone please help me with that.
Tableau graph
I did this in tableau, I want to replicate the same in python.
Also, please let me know if there a better way of coding the same.
I am using Anaconda Python 3.5, Matplotlib library, Windows 10, Idlex IDE
You could just add a scatterplot on top of your bars, using matplotlib scatter function.
Also, note that you could use the numpy.arange function to generate your x values, instead of your current list(range(1,10)).
See example below
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
df = pd.DataFrame({'y':['a','b','c','d','e','f','g','h','i'],
'x':[10,9,9,8,7,6,10,6,7]})
df.sort_values(by='x',inplace=True,ascending = True)
plt.barh(bottom=np.arange(len(df)), width=df.x, height = 0.15, align='center',color = 'blue')
plt.scatter(df.x.values, y=np.arange(df.shape[0]), color='b', s=40)
plt.xlim([0,11])
plt.yticks(np.arange(len(df)),df.y)
plt.show()