I have trained a faster rcnn model with a custom dataset using Tensorflow's Object Detection Api. Over time I would like to continue to update the model with additional images (collected weekly). The goal is to optimize for accuracy and to weight newer images over time.
Here are a few alternatives:
Add images to previous dataset and train a completely new model
Add images to previous dataset and continue training previous model
New dataset with just new images and continue training previous model
Here are my thoughts:
option 1: would be more time consuming, but all images would be treated "equally".
Option 2: would like take less additional training time, but one concern is that the algorithm might be weighting the earlier images more.
Option 3: This seems like the best option. Take original model and simply focus on training the new stuff.
Is one of these clearly better? What would be the pros/cons of each?
In addition, I'd like to know if it's better to keep one test set as a control for accuracy or to create a new one each time that includes newer images. Perhaps adding some portion of new images to model and another to the test set, and then feeding older test set images back into model (or throwing them out)?
Consider the case where your dataset is nearly perfect. If you ran the model on new images (collected weekly), then the results (i.e. boxes with scores) would be exactly what you want from the model and it would be pointless adding these to the dataset because the model would not be learning anything new.
For the imperfect dataset, results from new images will show (some) errors and these are appropriate for further training. But there may be "bad" images already in the dataset and it is desirable to remove these. This indicates that Option 1 must occur, on some schedule, to remove entirely the effect of "bad" images.
On a shorter schedule, Option 3 is appropriate if the new images are reasonably balanced across the domain categories (in some sense a representative subset of the previous dataset).
Option 2 seems pretty safe and is easier to understand. When you say "the algorithm might be weighting the earlier images more", I don't see why this is a problem if the earlier images are "good". However, I can see that the domain may change over time (evolution) in which case you may well wish to counter-weight older images. I understand that you can modify the training data to do just that as discussed in this question:
Class weights for balancing data in TensorFlow Object Detection API
Related
I am currently testing out custom object detection using the Tensorflow API. But I don't quite seem to understand the theory behind it.
So if I for example download a version of MobileNet and use it to train on, lets say, red and green apples. Does it forget all the things that is has already been trained on? And if so, why does it then benefit to use MobileNet over building a CNN from scratch.
Thanks for any answers!
Does it forget all the things that is has already been trained on?
Yes, if you re-train a CNN previously trained on a large database with a new database containing fewer classes it will "forget" the old classes. However, the old pre-training can help learning the new classes, this is a training strategy called "transfert learning" of "fine tuning" depending on the exact approach.
As a rule of thumb it is generally not a good idea to create a new network architecture from scratch as better networks probably already exist. You may want to implement your custom architecture if:
You are learning CNN's and deep learning
You have a specific need and you proved that other architectures won't fit or will perform poorly
Usually, one take an existing pre-trained network and specialize it for their specific task using transfert learning.
A lot of scientific literature is available for free online if you want to learn. you can start with the Yolo series and R-CNN, Fast-RCNN and Faster-RCNN for detection networks.
The main concept behind object detection is that it divides the input image in a grid of N patches, and then for each patch, it generates a set of sub-patches with different aspect ratios, let's say it generates M rectangular sub-patches. In total you need to classify MxN images.
In general the idea is then analyze each sub-patch within each patch . You pass the sub-patch to the classifier in your model and depending on the model training, it will classify it as containing a green apple/red apple/nothing. If it is classified as a red apple, then this sub-patch is the bounding box of the object detected.
So actually, there are two parts you are interested in:
Generating as many sub-patches as possible to cover as many portions of the image as possible (Of course, the more sub-patches, the slower your model will be) and,
The classifier. The classifier is normally an already exisiting network (MobileNeet, VGG, ResNet...). This part is commonly used as the "backbone" and it will extract the features of the input image. With the classifier you can either choose to training it "from zero", therefore your weights will be adjusted to your specific problem, OR, you can load the weigths from other known problem and use them in your problem so you won't need to spend time training them. In this case, they will also classify the objects for which the classifier was training for.
Take a look at the Mask-RCNN implementation. I find very interesting how they explain the process. In this architecture, you will not only generate a bounding box but also segment the object of interest.
I'm trying to get a better understanding on how to create object detection models in Turi Create (for usage in CoreML). I'm trying to create a model that detects custom images I designed and printed myself. To avoid having to take a huge amount of photo's, I'm figured I'd use the one-shot-object-detection feature provided by Turi Create. So far so good. I feed the algorithm two starter images and it successfully generates the synthetic data set and creates a somewhat reliable model.
Now I'm wondering what happens when I want to add a third category. I could of course add a third starter image and run the code again, but this feels like 2/3th of the work is redundant...
Is there a way to continue training a previously trained model, or combine multiple models so I don't have to retrain my models from scratch every time I add a category? If not, any other ways to get this done (e.g. TensorFlow)?
Turi Create is rather limited in the options it offers for retraining (none, basically). If you want more control over the process, using a tool such as TensorFlow is the better choice.
Im currenty working on a project at University, where we are using python + tensorflow and keras to train an image object detector, to detect different parts of the root system of Arabidopsis.
Our current ressults are pretty bad, as we do only have about 100 images to train the model with at this moment, but we are currently working on cultuvating more plants in order to get more images(more data) to train the tensorflow model.
We have implemented the following Mask_RCNN model:Github- Mask_RCNN tensorflow
We are looking to detect three object clases: stem, main root and secondary root.
But the model detects main roots incorrectly where the secondary roots are located.
It should be able to detect something like this:Root detection example
Training root data set that we are using right now:training images
What is the usual sample size that is used to train a neural network accurate results?
First off: I think there is no simple rule to estimate the sample size but at least it depends on:
1. Quality of your images
I downloaded the images and I think you need to preprocess them before you can use it to reduce the "problem complexity". In some projects, in which I worked with biological data, a background removal (image - low pass filter) was the key to get better results. But you should definitely remove/crop the area outside the region of your interest (like the tape and the ruler). I would try to get the cleanest data set as possible (including manually adjustments cv2/ gimp/ etc.) to focus the network to solve "the right problem".. After that you could apply some random distortion to make it also work on fuzzy/bad/realistic images as well.
2. The way you work with your data
There are a few tricks that enables you to "expand" your dataset.
Sometimes it's very helpful to let a generator method crop random small patches from your input data. This allows you to work with more batches (on small gpus) and gives your network more "variety", (just think about the conv2d task: if you don't use random cropping your filters will slide over the same areas over and over again (at the same image)). Because of the same reason: apply random distortion, flip and rotate your images.
3. Network architecture
In your case I would prefer a U-Net architecture with a last conv2d output of 3 (your classes) feature maps, a final softmax activation and an categorical_crossentropy, this enables you to play with the depth, because sometimes you need sophisticated architectures to solve a problem (close to 100%) but in your case you just want to see a first working result. So fewer layers and a simple architecture could also help you to get things work. Maybe there are some trained network weights for a U-Net which meets your requirements (search on kaggle for example). Because it is also helpful (to reduce the data you need) to use "transfer learning" -> use the first layers of an network (weights) which is already trained. Using a semantic segmentation the first filters will become something like an edge detection for the most given problems/images.
4. Your mental model of "accurate results"
This is the hardest part.. because it evolves during your project. Eg. in the same moment your networks starts to perform well on preprocessed input images you will start to think about architecture/data changes to make it work on fuzzy images as well. This is why you should start with a feasible problem but always improve your dataset (including rare kinds of roots) and tune your network architecture step by step.
I am new to machine learning field and based on what I have seen on youtube and read on internet I conjectured that it might be possible to count pedestrians in a video using tensorflow's object detection API.
Consequently, I did some research on tensorflow and read documentation about how to install tensorflow and then finally downloaded tensorflow and installed it. Using the sample files provided on github I adapted the code related to object_detection notebook provided here ->https://github.com/tensorflow/models/tree/master/research/object_detection.
I executed the adapted code on the videos that I collected while making changes to visualization_utils.py script so as to report number of objects that cross a defined region of interest on the screen. That is I collected bounding boxes dimensions (left,right,top, bottom) of person class and counted all the detection's that crossed the defined region of interest (imagine a set of two virtual vertical lines on video frame with left and right pixel value and then comparing detected bounding box's left & right values with predefined values). However, when I use this procedure I am missing on lot of pedestrians even though they are detected by the program. That is the program correctly classifies them as persons but sometimes they don't meet the criteria that I defined for counting and as such they are not counted. I want to know if there is a better way of counting unique pedestrians using the code rather than using the simplistic method that I am trying to develop. Is the approach that I am using the right one ? Could there be other better approaches ? Would appreciate any kind of help.
Please go easy on me as I am not a machine learning expert and just a novice.
You are using a pretrained model which is trained to identify people in general. I think you're saying that some people are pedestrians whereas some other people are not pedestrians, for example, someone standing waiting at the light is a pedestrian, but someone standing in their garden behind the street is not a pedestrian.
If I'm right, then you've reached the limitations of what you'll get with this model and you will probably have to train a model yourself to do what you want.
Since you're new to ML building your own dataset and training your own model probably sounds like a tall order, there's a learning curve to be sure. So I'll suggest the easiest way forward. That is, use the object detection model to identify people, then train a new binary classification model (about the easiest model to train) to identify if a particular person is a pedestrian or not (you will create a dataset of images and 1/0 values to identify them as pedestrian or not). I suggest this because a boolean classification model is about as easy a model as you can get and there are dozens of tutorials you can follow. Here's a good one:
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network.ipynb
A few things to note when doing this:
When you build your dataset you will want a set of images, at least a few thousand along with the 1/0 classification for each (pedestrian or not pedestrian).
You will get much better results if you start with a model that is pretrained on imagenet than if you train it from scratch (though this might be a reasonable step-2 as it's an extra task). Especially if you only have a few thousand images to train it on.
Since your images will have multiple people in it you have a problem of identifying which person you want the model to classify as a pedestrian or not. There's no one right way to do this necessarily. If you have a yellow box surrounding the person the network may be successful in learning this notation. Another valid approach might be to remove the other people that were detected in the image by deleting them and leaving that area black. Centering on the target person may also be a reasonable approach.
My last bullet-point illustrates a problem with the idea as it's I've proposed it. The best solution would be to alter the object detection network to ouput both a bounding box per-person, and also a pedestrian/non pedestrian classification with it; or to only train the model to identify pedestrians, specifically, in the first place. I mention this as more optimal, but I consider it a more advanced task than my first suggestion, and a more complex dataset to manage. It's probably not the first thing you want to tackle as you learn your way around ML.
I'm very new to this stuff so please bear with me. I followed a quick simple video about image recognition/classification in YT and the program indeed could classify the image with a high percentage. But then I do have some other images that was incorrectly classified.
On tensorflow site: https://www.tensorflow.org/tutorials/image_retraining#distortions
However, one should generally avoid point-fixing individual errors in
the test set, since they are likely to merely reflect more general
problems in the (much larger) training set.
so here are my questions:
What would be the best way to correct the program's guess? eg. image is B but the app returned with the results "A - 70%, B - 30%"
If the answer to one would be to retrain again, how do I go about retraining the program again without deleting the previous bottlenecks files created? ie. I want the program to keep learning while retaining previous data I already trained it to recognize.
Unfortunately there is often no easy fix, because the model you are training is highly complex and very hard for a human to interpret.
However, there are techniques you can use to try and reduce your test error. First make sure your model isn't overfitting or underfitting by observing the difference between train and test errors. If either is the case then try applying standard techniques, such as choosing a deeper model and/or using more filters if underfitting or adding regularization if overfitting.
Since you say you are already classifying correctly a high percentage of the time, I would start inspecting misclassified examples directly to try and gain insight into what you might be able to improve.
If possible, try and observe what your misclassified images have in common. If you are lucky they will all fall into one or a small number of categories. Here are some examples of what you might see and possible solutions:
Problem: Dogs facing left are misclassified as cats
Solution: Try augmenting your training set with rotations
Problem: Darker images are being misclassified
Solution: Make sure you are normalizing your images properly
It is also possible that you have reached the limits of your current approach. If you still need to do better consider trying a different approach like using a pretrained network for image recognition, such as VGG.