How to introduce Redis just for caching no CRUD - redis

I am planning to implement a caching layer in my application using Redis. right now the application is fetching huge-sized data from DB whenever the user initiates certain plan load. this plan load behind the scene, triggers few heavyweight data accesses and orchestrate all calls in final results.
Data access is happening through JPA Repository right now to access my Oracle DB. when I introduced redis layer, it's not initiating the cache in first access, rather the application tried to fetch data from the empty cache.
My questions are
would my design work, since I want to keep the CRUD operations as is in JPA repositories. I just want to introduce redis for caching, no crud operations.
I have a huge amount of data(probably 2 GB) that should sit in the cache layer. how much can max data redis hold?

My questions are
would my design work, since I want to keep the CRUD operations as is in JPA repositories. I just want to introduce redis for caching, no crud operations.
It is gonna work however you will have main problem cache invalidation.
When you do CRUD operation your redis cache still will have old data and you will have inconsistency. The general way of using redis as cache is setting ttl(Time-To-live) for each key. But you can solve such inconsistency by introducing trigger which erases key in redis if you do any CRUD operation.
Depend on your workload you can meet case when you have low cache hit rate.
For example, if you rarely access to keys in the cache then all of them will be expired until next access. Frankly cache will not work effectively in this case. It could be avoided by warming cache or using redis not as cache but as second storage with replicating data.
I have a huge amount of data(probably 2 GB) that should sit in the cache layer. how much can max data redis hold?
Redis is extremely efficient and limited by your physical resources(RAM) and by size for key and for data stored by key, it is 512Mb.
You have to account that redis can fragment data among virtual memory than your source 2Gb of data represented by keys and data for it can occupy 3GB RAM.

Related

Cons of using MemoryCache as a temporary copy of DB table

I have a site where you can list your car for sale. There is a list and a map with filtering on car types and other car specifications. My idea was to cache cars table and use that to filter on when user is searching for a car on the website. Currently, especially when zooming in/out on the map, each time user does that, http request is made and it's querying the database, and that can be slow and heavy on the server.
As an experiment with 1 000 items, I have cached map data (trimmed data with only basic info) and it's working fine. I was thinking of doing a basically copy of cars table instead with all needed joins added in Memory Cache and use that instead of querying the DB every request for both list and the map. I would have Cron Job every 5 minutes (as data can change, but it doesn't have to be immediate) to update Memory Cache with latest cars data from DB.
What would be the cons of using this approach in long term and for using it for example storing 100 000 records? Beside server needing more RAM, would there be any concerns about scalability or usability of this approach? Would it be better to use Redis instead?
I do have in place now "search as you type" service, but I don't really need that functionality as filtering is pretty exact, I have added it more as a caching server but I think I would be better off just using Memory Cache until a real need for that kind of service is required.
Thank you
Since memory isn’t infinite, we need to limit the number of items stored in the In-Memory cache.
MemoryCache VS Redis
MemoryCache
MemoryCache is embedded in the process , hence can only be used as a plain key-value store from that process.
Redis
Redis is a remote data structure server. It is certainly slower than just storing the data in local memory.
I conclude that MemoryCache is running in the web server of the current application, and it is limited by the performance of the web server. Of course, it will be very fast under the same configuration. I think the disadvantage is that the stored data cannot be shared with other applications.
If redis is used, reading data directly from memory is not as fast as memorycache, but it has high reliability and high scalability.
Related Post:
1. How to update redis after updating database?
2. how to keep caching up to date
3. How can MySQL update data in real time in redis cache?

Can I use Aerospike as persistent layer

Aerospike is a key store database with support for persistence.
But can I trust this persistence enough to use it as an database altogether?
As I understand it writes data to memory first and then persist it.
I can live with eventual consistency, but I don't want to be in a state where something was committed but due to machine failure it never got written down to the disk and hence can never be retrieved.
I tried looking at the various use cases but I was just curious about this one.
Also what guarantee does client.put provides as far as saving of a new record is concerned.
Aerospike provides a user configurable replication factor. Most people use 2, if you are really concerned, you can use 3 or even more. Size the cluster accordingly. For RF=3, put returns when 3 nodes have written data to the their write-block in memory which is asynchronously flushed to persistent layer. So it depends on what node failure pattern you are trying protect against. If you are worried about entire cluster crashing instantly, then you may have a case for 1 second (default) worth of lost data. The one second can be configured lower as well. Aerospike also provides rack aware configuration which protects against data loss if entire rack goes down. The put goes to nodes in different racks always. Finally Aerospike provides cross data center replication - its asynchronous but does give an option to replicate your data across geo. Of course, going across geo does have its latency. Finally, if you are totally concerned about entire cluster shutdown, you can connect to two separate clusters in your application and always push updates to two separate clusters. Of course, you must now worry about consistency if application fails between two writes. I don't know of anyone who had to resort to that.

Does Redis persist data?

I understand that Redis serves all data from memory, but does it persist as well across server reboot so that when the server reboots it reads into memory all the data from disk. Or is it always a blank store which is only to store data while apps are running with no persistence?
I suggest you read about this on http://redis.io/topics/persistence . Basically you lose the guaranteed persistence when you increase performance by using only in-memory storing. Imagine a scenario where you INSERT into memory, but before it gets persisted to disk lose power. There will be data loss.
Redis supports so-called "snapshots". This means that it will do a complete copy of whats in memory at some points in time (e.g. every full hour). When you lose power between two snapshots, you will lose the data from the time between the last snapshot and the crash (doesn't have to be a power outage..). Redis trades data safety versus performance, like most NoSQL-DBs do.
Most NoSQL-databases follow a concept of replication among multiple nodes to minimize this risk. Redis is considered more a speedy cache instead of a database that guarantees data consistency. Therefore its use cases typically differ from those of real databases:
You can, for example, store sessions, performance counters or whatever in it with unmatched performance and no real loss in case of a crash. But processing orders/purchase histories and so on is considered a job for traditional databases.
Redis server saves all its data to HDD from time to time, thus providing some level of persistence.
It saves data in one of the following cases:
automatically from time to time
when you manually call BGSAVE command
when redis is shutting down
But data in redis is not really persistent, because:
crash of redis process means losing all changes since last save
BGSAVE operation can only be performed if you have enough free RAM (the amount of extra RAM is equal to the size of redis DB)
N.B.: BGSAVE RAM requirement is a real problem, because redis continues to work up until there is no more RAM to run in, but it stops saving data to HDD much earlier (at approx. 50% of RAM).
For more information see Redis Persistence.
It is a matter of configuration. You can have none, partial or full persistence of your data on Redis. The best decision will be driven by the project's technical and business needs.
According to the Redis documentation about persistence you can set up your instance to save data into disk from time to time or on each query, in a nutshell. They provide two strategies/methods AOF and RDB (read the documentation to see details about then), you can use each one alone or together.
If you want a "SQL like persistence", they have said:
The general indication is that you should use both persistence methods if you want a degree of data safety comparable to what PostgreSQL can provide you.
The answer is generally yes, however a fuller answer really depends on what type of data you're trying to store. In general, the more complete short answer is:
Redis isn't the best fit for persistent storage as it's mainly performance focused
Redis is really more suitable for reliable in-memory storage/cacheing of current state data, particularly for allowing scalability by providing a central source for data used across multiple clients/servers
Having said this, by default Redis will persist data snapshots at a periodic interval (apparently this is every 1 minute, but I haven't verified this - this is described by the article below, which is a good basic intro):
http://qnimate.com/redis-permanent-storage/
TL;DR
From the official docs:
RDB persistence [the default] performs point-in-time snapshots of your dataset at specified intervals.
AOF persistence [needs to be explicitly configured] logs every write operation received by the server, that will be played again at server startup, reconstructing the
original dataset.
Redis must be explicitly configured for AOF persistence, if this is required, and this will result in a performance penalty as well as growing logs. It may suffice for relatively reliable persistence of a limited amount of data flow.
You can choose no persistence at all.Better performance but all the data lose when Redis shutting down.
Redis has two persistence mechanisms: RDB and AOF.RDB uses a scheduler global snapshooting and AOF writes update to an apappend-only log file similar to MySql.
You can use one of them or both.When Redis reboots,it constructes data from reading the RDB file or AOF file.
All the answers in this thread are talking about the possibility of redis to persist the data: https://redis.io/topics/persistence (Using AOF + after every write (change)).
It's a great link to get you started, but it is defenently not showing you the full picture.
Can/Should You Really Persist Unrecoverable Data/State On Redis?
Redis docs does not talk about:
Which redis providers support this (AOF + after every write) option:
Almost none of them - redis labs on the cloud does NOT provide this option. You may need to buy the on-premise version of redis-labs to support it. As not all companies are willing to go on-premise, then they will have a problem.
Other Redis Providers does not specify if they support this option at all. AWS Cache, Aiven,...
AOF + after every write - This option is slow. you will have to test it your self on your production hardware to see if it fits your requirements.
Redis enterpice provide this option and from this link: https://redislabs.com/blog/your-cloud-cant-do-that-0-5m-ops-acid-1msec-latency/ let's see some banchmarks:
1x x1.16xlarge instance on AWS - They could not achieve less than 2ms latency:
where latency was measured from the time the first byte of the request arrived at the cluster until the first byte of the ‘write’ response was sent back to the client
They had additional banchmarking on a much better harddisk (Dell-EMC VMAX) which results < 1ms operation latency (!!) and from 70K ops/sec (write intensive test) to 660K ops/sec (read intensive test). Pretty impresive!!!
But it defenetly required a (very) skilled devops to help you create this infrastructure and maintain it over time.
One could (falsy) argue that if you have a cluster of redis nodes (with replicas), now you have full persistency. this is false claim:
All DBs (sql,non-sql,redis,...) have the same problem - For example, running set x 1 on node1, how much time it takes for this (or any) change to be made in all the other nodes. So additional reads will receive the same output. well, it depends on alot of fuctors and configurations.
It is a nightmare to deal with inconsistency of a value of a key in multiple nodes (any DB type). You can read more about it from Redis Author (antirez): http://antirez.com/news/66. Here is a short example of the actual ngihtmare of storing a state in redis (+ a solution - WAIT command to know how much other redis nodes received the latest change change):
def save_payment(payment_id)
redis.rpush(payment_id,”in progress”) # Return false on exception
if redis.wait(3,1000) >= 3 then
redis.rpush(payment_id,”confirmed”) # Return false on exception
if redis.wait(3,1000) >= 3 then
return true
else
redis.rpush(payment_id,”cancelled”)
return false
end
else
return false
end
The above example is not suffeint and has a real problem of knowing in advance how much nodes there actually are (and alive) at every moment.
Other DBs will have the same problem as well. Maybe they have better APIs but the problem still exists.
As far as I know, alot of applications are not even aware of this problem.
All in all, picking more dbs nodes is not a one click configuration. It involves alot more.
To conclude this research, what to do depends on:
How much devs your team has (so this task won't slow you down)?
Do you have a skilled devops?
What is the distributed-system skills in your team?
Money to buy hardware?
Time to invest in the solution?
And probably more...
Many Not well-informed and relatively new users think that Redis is a cache only and NOT an ideal choice for Reliable Persistence.
The reality is that the lines between DB, Cache (and many more types) are blurred nowadays.
It's all configurable and as users/engineers we have choices to configure it as a cache, as a DB (and even as a hybrid).
Each choice comes with benefits and costs. And this is NOT an exception for Redis but all well-known Distributed systems provide options to configure different aspects (Persistence, Availability, Consistency, etc). So, if you configure Redis in default mode hoping that it will magically give you highly reliable persistence then it's team/engineer fault (and NOT that of Redis).
I have discussed these aspects in more detail on my blog here.
Also, here is a link from Redis itself.

Is Infinispan an improvement of JBoss Cache?

According to this link which belongs to JBoss documentation, I understood that Infinispan is a better product than JBoss Cache and kind of improvement the reason for which they recommend to migrate from JBoss Cache to Infinispan, that is supported by JBoss as well. Am I right in what I understood? Otherwise, are there differences?
One more question : Talking about replication and distribution, can any one of them be better than the other according to the need?
Thank you
Question:
Talking about replication and distribution, can any one of them be better than the other according to the need?
Answer:
I am taking a reference directly from Clustering modes - Infinispan
Distributed:
Number of copies represents the tradeoff between performance and durability of data
The more copies you maintain, the lower performance will be, but also the lower the risk of losing data due to server outages
use of a consistent hash algorithm to determine where in a cluster entries should be stored
No need to replicate data on each node that takes more time than just communicating hash code
Best suitable if no of nodes are high
Best suitable if size of data stored in cache is high.
Replicated:
Entries added to any of these cache instances will be replicated to all other cache instances in the cluster
This clustered mode provides a quick and easy way to share state across a cluster
replication practically only performs well in small clusters (under 10 servers), due to the number of replication messages that need to happen - as the cluster size increases
Practical Experience:
I are using Infinispan cache in my running live application on Jboss server having 8 nodes. Initially I used replicated cache but it took much longer time to respond due to large size of data. Finally we come back to Distributed and now its working fine.
Use replicated or distributed cache only for data specific to any user session. If data is common regardless of any user than prefer Local cache that's created separately for each node.

SQL Server 2005, Caches and all that jazz

Background to question: I'm looking to implement a caching system for my website. Currently we're exploring memcache as a means of doing this. However, I am looking to see if something similar exists for SQL Server. I understand that MySQL has query cache which although is not distributed works as a sort of 'stop gap' measure. Is MySQL query cache equivalent to the buffer cache in SQL Server?
So here are my questions:
Is there a way to know is currently stored in the buffer cache?
Follow up to this, is there a way to force certain tables or result sets into the cache
How much control do I have over what goes on in the buffer and procedure cache? I understand there used to be a DBCC PINTABLE command but that has since been discontinued.
Slightly off topic: Should the caching even exists on the database layer? Or it is more prudent to manage caches using Velocity/Memcache? Is so, why? It seems like cache invalidation is something of a pain when handling many objects with overlapping triggers.
Thanks!
SQL Server implements a buffer pool same way every database product under the sun does (more or less) since System R showed the way. The gory details are explain in Transaction Processing: Concepts and Techniques. I addition it has a caching framework used by the procedure cache, permission token cache and many many other caching classes. This framework is best described in Clock Hands - what are they for.
But this is not the kind of caching applications are usually interested in. The internal database cache is perfect for scale-up scenarios where a more powerfull back end database is able to respond faster to more queries by using these caches, but the modern application stack tends to scale out the web servers and the real problem is caching the results of query interogations in a cache used by the web farm. Ideally, this cache should be shared and distributed. Memcached and Velocity are examples of such application caching infrastructure. Memcache has a long history by now, its uses and shortcommings are understood, there is significant know-how around how to use it, deploy it, manage it and monitor it.
The biggest problem with caching in the application layer, and specially with distributed caching, is cache invalidation. How to detect the changes that occur in the back end data and mark cached entries invalid so that new requests don't use stale data.
The simplest (for some definition of simple...) alternative is proactive invalidation from the application. The code knows when it changes an entity in the database, and after the change occurs it takes the extra step to mark the cached entries invalid. This has several short commings:
Is difficult to know exactly which cached entries are to be invalidated. Dependencies can be quite complex, things are always more that just a simple table/entry, there are aggregate queries, joins, partitioned data etc etc.
Code discipline is required to ensure all paths that modify data also invalidate the cache.
Changes to the data that occur outside the application scope are not detected. In practice, there are always changes that occur outside the application scope: other applications using the same data, import/export and ETL jobs, manual intervention etc etc.
A more complicated alternative is a cache that is notified by the database itself when changes occur. Not many technologies are around to support this though, it cannot work without an active support from the database. SQL Server has Query Notifications for such scenarios, you can read more about it at The Mysterious Notification. Implementing QN based caching in a standalone application is fairly complicated (and often done badly) but it works fine when implemented correctly. Doing so in a shared scaled out cache like Memcached is quite a feats of strength, but is doable.
Nai,
Answers to your questions follow:
From Wiki - Always correct... ? :-). For a more Microsoft answer, here is their description on Buffer Cache.
Buffer management
SQL Server buffers pages in RAM to
minimize disc I/O. Any 8 KB page can
be buffered in-memory, and the set of
all pages currently buffered is called
the buffer cache. The amount of memory
available to SQL Server decides how
many pages will be cached in memory.
The buffer cache is managed by the
Buffer Manager. Either reading from or
writing to any page copies it to the
buffer cache. Subsequent reads or
writes are redirected to the in-memory
copy, rather than the on-disc version.
The page is updated on the disc by the
Buffer Manager only if the in-memory
cache has not been referenced for some
time. While writing pages back to
disc, asynchronous I/O is used whereby
the I/O operation is done in a
background thread so that other
operations do not have to wait for the
I/O operation to complete. Each page
is written along with its checksum
when it is written. When reading the
page back, its checksum is computed
again and matched with the stored
version to ensure the page has not
been damaged or tampered with in the
meantime.
For this answer, please refer to the above answer:
Either reading from or writing to any page copies it to the buffer cache. Subsequent reads or writes are redirected to the in-memory copy, rather than the on-disc version.
You can query the bpool_commit_target and bpool_committed columns in the sys.dm_os_sys_info catalog view to return the number of pages reserved as the memory target and the number of pages currently committed in the buffer cache, respectively.
I feel like Microsoft has had time to figure out caching for their product and should be trusted.
I hope this information was helpful,
Thanks!
Caching can take many different meaning for an ASP.Net application spread from the browser all the way to your hardware with the IIS, Application, Database thrown in the middle.
The caching you are talking about is Database level caching, this is mostly transparent to your application. This level of caching will include buffer pools, statement caches etc. Make sure your DB server has plenty of RAM. In theory a DB server should be able to load the entire DB store in memory. There is not much you can do at this level unless you pre-fetch some anticipated data when you start the application and ensure that it is in DB cache.
On the other hand is in-memory distributed caching system. Apart from memcache and velocity, you can look at some commercial solutions like NCache or Oracle Coherence. I have no experience in either of them to recommend. This level of caching promises scalability at a cheaper cost. It is expensive to scale the DB tier compared to this. You may have to consider aspects like network bandwidth though. This type of caching, specially with invalidation and expiry can be complicated
You can cache at Web Service tier using output caching at IIS level (in IIS 7) and ASP.Net level.
At the application level you can use ASP.Net cache. This is the one that you can control most and gives you good benefits.
Then there is caching going on at client web proxy tier that can be controlled by cache-control HTTP header.
Finally you have browser level caching, view state and cookies for small data.
And don't forget that hardware like SAN caches at physical disk access level too.
In summary caching can occur at many levels and it for you to analyse and implement the best solution for your scenario. You have find out stability and volatility of your data, expected load etc. I believe caching at ASP.Net level (specially for objects) gives you most flexibility and control.
Your specific technical questions about SQL Server's buffer cache are going down the wrong path when it comes to "implement a caching system for my website".
Sure, SQL Server is going to cache data so it can improve its performance (and it does so rather well), but the point of implementing a caching layer on your web front-ends is to avoid from having to talk to the database at all - because there is still overhead and resource contention even when your query is fulfilled entirely from SQL Server's cache.
You want to be looking into is: memcached, Velocity, ASP.NET Cache, P&P Caching Application Block, etc.