Avoiding overfitting while training a neural network with Tensorflow - tensorflow

I am training a neural network using Tensorflow's object detetction API to detect cars. I used the following youtube video to learn and execute the process.
https://www.youtube.com/watch?v=srPndLNMMpk&t=65s
Part 1 to 6 of his series.
Now in his video, he has mentioned to stop the training when the loss value reaches ~1 or below on an average and that it would take about 10000'ish' steps.
In my case, it is 7500 steps right now and the loss values keep fluctuating from 0.6 to 1.3.
Alot of people complained in the comment section about false positives on this series but I think this happened because of the unnecessary prolonged process of training (because they din't know maybe when to stop ?) which caused overfitting!
I would like to avoid this problem. I would like to have not the most optimum weights but fairly optimum weights while avoiding false detection or overfitting. I am also observing 'Total Loss' section of Tensorboard. It fluctuates between 0.8 to 1.2. When do I stop the training process?
I would also like to know in general, which factors does the 'stopping of training' depend on? is it always about the average loss of 1 or less?
Additional information:
My training data has ~300 images
Test data ~ 20 images
Since I am using the concept of transfer learning, I chose ssd_mobilenet_v1.model.
Tensorflow version 1.9 (on CPU)
Python version 3.6
Thank you!

You should use a validation test, different from the training set and the test set.
At each epoch, you compute the loss of both training and validation set.
If the validation loss begin to increase, stop your training. You can now test your model on your test set.
The Validation set size is usually the same as the test one. For example, training set is 70% and both validation and test set are 15% each.
Also, please note that 300 images in your dataset seems not enough. You should increase it.
For your other question :
The loss is the sum of your errors, and thus, depends on the problem, and your data. A loss of 1 does not mean much in this regard. Never rely on it to stop your training.

Related

TensorFlow: Fit gives great val_acc, but evaluate gives low acc

I have some data (reuters).
I combine the training and test data into one large data set.
I shuffle the entire data set.
I then split the data set into 50%. 50% for training and 50% for testing.
I then setup a sequential model (Embedding, GRU, BatchNormalization, Dense).
I compile with adam optimizer, and loss = sparse_categorical_crossentropy
I run fit on it, for 5 epochs, with validation_split = 0.2
I get a val_acc of 95%. I am very happy with this.
I then call evaluate with the test data, and get acc = 71%
When I repeat evaluate with the train data (instead of test data), just to see what happens, I get 95% acc (as I should).
I am trying to understand what is wrong with my acc score with the test data.
The data is shuffled between train and test each time, so it can not be related to the data.
I tried the checkpoint save/restore trick, that did not seem to help.
I have reduced epochs in case of overfitting, but this has not helped.
I am curious what is going on. The only thing I can think of is there is some sort of overfitting going on that is carrying over to test, but is NOT impacting val_acc.
(Side note: the 20% data saved for validation during fit should not cause an overfitting problem, correct?)
Any ideas what could be wrong with my approach?
Thank you.
Edit 1:
Okey, I might be onto something. I noticed something odd about the test data that is included with the reuters dataset, vs the training data.
In previous experiments, results were always poor evaluating against test set, vs an unused portion of the training data.
This time, I combined the training and test data sets into one set, and shuffled.
Then shuffled some more, and then generated pseudo data around it, and shuffled some more.
Then I peeled off 20% to use as test data.
This time it worked. I got 95% for training, validation and evaluation accuracy.
I tried searching for information on the test set to see if anyone came up with anything but found no results. So I'm going to presently chalk it up to test data that is significantly different from the training set.
Edit 2:
Nevermind edit 1. I think I was corrupting my test data with pseudo-generated version of training data, that was close enough to work.
The only conclusion I can draw is that there is a lot of overfitting going on during my training AND using validation data during training is misleading, as it is also being overfit.
(Why validation data is being used to help overfit, I do not know).
Overfitting occurs due to many reasons, to overcome this problem you can try different methods like:
L1/L2 regularization.
Dropout layers: By using dropout layers in the network, we ignore a subset of units of our network with a set probability. Using dropout, we can reduce interdependent learning among units, which may have led to overfitting.
Early stopping: Monitors the performance of the model for every epoch on a held-out validation set during the training, and terminates the training conditional on the validation performance.
Feature selection: Improves the machine learning process and increases the predictive power of machine learning algorithms by selecting the most important variables and eliminating unnecessary and irrelevant features.
For more details refer to this link.

YOLOv4 loss too high

I am using YOLOv4-tiny for a custom dataset of 26 classes that I collected from Open Images Dataset. The dataset is almost balanced(850 images per class but different number of bounding boxes). When I used YOLOv4-tiny to train on just 3 classes the loss was near 0.5, it was fairly accurate. But for 26 classes as soon as the loss goes below 2 the model starts to overfit. The prediction are also very inaccurate.
I have tried to change the parameters like the learning rate, the momentum and the size but whatever I do the models becomes worse then before. Using regular YOLOv4 model rather then YOLO-tiny does not help either. How can I bring the loss further down?
Have you tried training with mAP? You can take a subset of your training set and make it the validation set. This can be done in the same way you made your training and test set. Then, you can run darknet.exe detector train data/obj.data yolo-obj.cfg yolov4.conv.137 -map. This will keep track of the loss in your validation set. When the error in the validation say goes up, this is the time to stop training and prevent overfitting (this is called: early stopping).
You need to run the training for (classes*2000)iterations. However, for the best scores, you need to train your model for at least 6000 iterations (also known as max_batches). Also please remember if you are using a b&w image, change the channels=3 to channels=1. You can stop your training once the avg loss becomes something like this: 0.XXXX.
Here's my mAP graph for 6000 iterations that ran for 6.2 hours:
avg loss with 6000 max_batches.
Moreover, you can follow this FAQ documentation here by Stéphane Charette.

Time taken to train Resnet on CIFAR-10

I was writing a neural net to train Resnet on CIFAR-10 dataset.
The paper Deep Residual Learning For Image Recognition mentions training for around 60,000 epochs.
I was wondering - what exactly does an epoch refer to in this case? Is it a single pass through a minibatch of size 128 (which would mean around 150 passes through the entire 50000 image training set?
Also how long is this expected to take to train(assume CPU only, 20-layer or 32-layer ResNet)? With the above definition of an epoch, it seems it would take a very long time...
I was expecting something around 2-3 hours only, which is equivalent to about 10 passes through the 50000 image training set.
The paper never mentions 60000 epochs. An epoch is generally taken to mean one pass over the full dataset. 60000 epochs would be insane. They use 64000 iterations on CIFAR-10. An iteration involves processing one minibatch, computing and then applying gradients.
You are correct in that this means >150 passes over the dataset (these are the epochs). Modern neural network models often take days or weeks to train. ResNets in particular are troublesome due to their massive size/depth. Note that in the paper they mention training the model on two GPUs which will be much faster than on the CPU.
If you are just training some models "for fun" I would recommend scaling them down significantly. Try 8 layers or so; even this might be too much. If you are doing this for research/production use, get some GPUs.

Multi GPU architecture, gradient averaging - less accurate model?

When I execute the cifar10 model as described at https://www.tensorflow.org/tutorials/deep_cnn I achieve 86% accuracy after approx 4 hours using a single GPU , when I utilize 2 GPU's the accuracy drops to 84% but reaching 84% accuracy is faster on 2 GPU's than 1.
My intuition is
that average_gradients function as defined at https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_multi_gpu_train.py returns a less accurate gradient value as an average of gradients will be less accurate than the actual gradient value.
If the gradients are less accurate then the parameters than control the function that is learned as part of training is less accurate. Looking at the code (https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_multi_gpu_train.py) why is averaging the gradients over multiple GPU's less accurate than computing the gradient on a single GPU ?
Is my intuition of averaging the gradients producing a less accurate value correct ?
Randomness in the model is described as :
The images are processed as follows:
They are cropped to 24 x 24 pixels, centrally for evaluation or randomly for training.
They are approximately whitened to make the model insensitive to dynamic range.
For training, we additionally apply a series of random distortions to artificially increase the data set size:
Randomly flip the image from left to right.
Randomly distort the image brightness.
Randomly distort the image contrast.
src : https://www.tensorflow.org/tutorials/deep_cnn
Does this have an effect on training accuracy ?
Update :
Attempting to investigate this further, the loss function value training with different number of GPU's.
Training with 1 GPU : loss value : .7 , Accuracy : 86%
Training with 2 GPU's : loss value : .5 , Accuracy : 84%
Shouldn't the loss value be lower for higher for higher accuracy, not vice versa ?
In the code you linked, using the function average_gradient with 2 GPUs is exactly equivalent (1) to simply using 1 GPU with twice the batch size.
You can see it in the definition:
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
Using a larger batch size (given the same number of epochs) can have any kind of effect on your results.
Therefore, if you want to do exactly equivalent (1) calculations in 1-GPU or 2-GPU cases, you may want to halve the batch size in the latter case. (People sometimes avoid doing it, because smaller batch sizes may also make the computation on each GPU slower, in some cases)
Additionally, one needs to be careful with learning rate decay here. If you use it, you want to make sure the learning rate is the same in the nth epoch in both 1-GPU and 2-GPU cases -- I'm not entirely sure this code is doing the right thing here. I tend to print the learning rate in the logs, something like
print sess.run(lr)
should work here.
(1) Ignoring issues related to pseudo-random numbers, finite precision or data set sizes not divisible by the batch size.
There is a decent discussion of this here (not my content). Basically when you distribute SGD, you have to communicate gradients back and forth somehow between workers. This is inherently imperfect, and so your distributed SGD typically diverges from a sequential, single-worker SGD at least to some degree. It is also typically faster, so there is a trade off.
[Zhang et. al., 2015] proposes one method for distributed SGD called elastic-averaged SGD. The paper goes through a stability analysis characterizing the behavior of the gradients under different communication constraints. It gets a little heavy, but it might shed some light on why you see this behavior.
Edit: regarding whether the loss should be lower for the higher accuracy, it is going to depend on a couple of things. First, I am assuming that you are using softmax cross-entropy for your loss (as stated in the deep_cnn tutorial you linked), and assuming accuracy is the total number of correct predictions divided by the total number of samples. In this case, a lower loss on the same dataset should correlate to a higher accuracy. The emphasis is important.
If you are reporting loss during training but then report accuracy on your validation (or testing) dataset, it is possible for these two to be only loosely correlated. This is because the model is fitting (minimizing loss) to a certain subset of your total samples throughout the training process, and then tests against new samples that it has never seen before to verify that it generalizes well. The loss against this testing/validation set could be (and probably is) higher than the loss against the training set, so if the two numbers are being reported from different sets, you may not be able to draw comparisons like "loss for 1 GPU case should be lower since its accuracy is lower".
Second, if you are distributing the training then you are calculating losses across multiple workers (I believe), but only one accuracy at the end, again against a testing or validation set. Maybe the loss being reported is the best loss seen by any one worker, but overall the average losses were higher.
Basically I do not think we have enough information to decisively say why the loss and accuracy do not seem to correlate the way you expect, but there are a number of ways this could be happening, so I wouldn't dismiss it out of hand.
I've also encountered this issue.
See Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour from Facebook which addresses the same issue. The suggested solution is simply to scale up the learning rate by k (after some reasonable warm-up epochs) for k GPUs.
In practice I've found out that simply summing up the gradients from the GPUs (rather than averaging them) and using the original learning rate sometimes does the job as well.

Difference of training steps or complete run through

on tensorflow.org in the beginner-mnist tutorial they train with 1000 steps, 100 examples. Which is more than the training set which only includes 55,000 points ? In the expert-mnist tutorial they train with 20000 steps, 50 examples.
I think the training steps are done, so that one could every training step make a print-output what loss or/and accuracy one got without waiting till the end or processing.
But could one also simply pipe all examples through the train_operation in 1 step and then look at the outcome, or is not possible ?
Training on the whole dataset at each iteration is called batch gradient descent. Training on minibatches (e.g. 100 samples at a time) is called stochastic gradient descent. You can read more about the two and the reasons for choosing larger or smaller batch sizes in this question on Cross Validated.
Batch gradient descent typically isn't feasible because it requires too much RAM. Each iteration will also take significantly longer and the tradeoff often isn't worth it even if you have the computational resources.
That said, the batch size is a hyperparameter that you can play around with to find a value that works well.