How can I use Tensorflow to make cellular automata? - tensorflow

Knowing that Tensorflow is good for working with matrices, would I be able to use Tensorflow to create a cellular automata? And would this offer a great deal of speed over just coding it in Python?
Are there any tutorials or websites that could point me in the right direction to use Tensorflow for more general purpose computing than machine learning (for example, simulations)?
If so, could someone help point me in the right direction to the type of Tensorflow commands I would need to learn to make this program? Thanks!

A TensorFlow implementation is likely to offer an improvement in execution time, especially if executed by GPU, since CA can be executed in parallel. See: https://cs.stackexchange.com/a/320/67726.
A starting point for TensorFlow in general might be the official guide and documentation, which do go beyond just machine learning. Also available are two tutorials on non-ML examples: Mandelbrot Set, Partial Differential Equations.
While TensorFlow is usually mentioned in the context of machine learning, it is worth noting that:
TensorFlow™ is an open source software library for high performance
numerical computation. Its flexible architecture allows easy
deployment of computation across a variety of platforms (CPUs, GPUs,
TPUs), and from desktops to clusters of servers to mobile and edge
devices.
Edit: here's an implementation and a tutorial about Conway's Game of Life using TF.

Related

Is everything in Tensorflow implemented as a NN?

For example, Kmeans clustering - is it implemented as a neural network algorithm?
No, why should it ? In order to better understand tensorflow take a look at the original paper in the abstract it states:
TensorFlow [1] is an interface for expressing machine learning
algorithms, and an implementation for executing such algorithms. A
computation expressed using TensorFlow can be executed with little or
no change on a wide variety of heterogeneous systems, ranging from
mobile devices such as phones and tablets up to large-scale
distributed systems of hundreds of machines and thousands of
computational devices such as GPU cards.
Hence Tensorflow is a tool to express algorithms and to schedule them on pieces of hardware such as CPU's, GPU's, TPU's and friends. Because it is most well known for running neural networks doesn't mean that even the simplest things should be implemented by using them.

Which kinds of high level API of tensorflow should I learn?

I have studied tensorflow for about one month. I just feel that creating a network with primitive operations of Tensorflow is very verbose. Then I found some high level API, such as TF-Slim, TF Learn, Keras. But multiple choices confuse me so that I don't know which I should learn.
TF-Slim is a lightweight library for defining, training and evaluating complex models in TensorFlow, but as I investigated, it's only for convnets. What networks Keras can build are more diverse.
Can Anyone give a comparision between them so that I could choose which high level API I should learn ? In terms of :
1. popularity: which ones are the most popular ?
2. practicality: what kinds of network can they build ?
3. performance: what's their training/inference performance ?
... something else
Hope someone could give me a suggestion. Thanks.
I suggest you start with Keras.
It´s very easy to learn, it has a broad user base (see Shobhits link), there is a ton of reference code out there on GitHub and in tutorials / MOOCs / eBooks etc. and you can build almost anything with it. And I personally think that is has a good documentation (although some might disagree with that...).
Since it´s an API that connects to Tensorflow, Theano, CNTK (and possibly more frameworks in the future) you have even more flexibility.
Don´t worry too much about performance. That´s really not important while youre learning.

Real Time Object detection using TensorFlow

I have just started experimenting with Deep Learning and Computer Vision technologies. I came across this awesome tutorial. I have setup the TensorFlow environment using docker and trained my own sets of objects and it provided greater accuracy when I tested it out.
Now I want to make the same more real-time. For example, instead of giving an image of an object as the input, I want to utilize a webcam and make it recognize the object with the help of TensorFlow. Can you guys guide me with the right place to start with this work?
You may want to look at TensorFlow Serving so that you can decouple compute from sensors (and distribute the computation), or our C++ api. Beyond that, tensorflow was written emphasizing throughput rather than latency, so batch samples as much as you can. You don't need to run tensorflow at every frame, so input from a webcam should definitely be in the realm of possibilities. Making the network smaller, and buying better hardware are popular options.

Compare deep learning framework between TensorFlow and PaddlePaddle

I want to study on the research of deep learning, but I don't know which framwork should I choice between TensorFlow and PaddlePaddle. who can make a contrast between the two frameworks? which one is better? especially in the running efficiency of CPU
It really depends what you are shooting for...
If you plan on training, CPU is not going to work well for you. Use colab or kaggle.
Assuming you do get a GPU, it depends if you want to focus on classification or object detection.
If you focus on classification, Keras is probably the easiest to work with or pytorch if you want some advanced stuff and to be able to change things.
If you plan on object detection, things are getting complicated... Inference is reasonably easy but training is complicated. There are actually 4 platforms you should consider:
Tensorflow - powerful but very difficult to work with. If you do not use Keras (and for OD you usually can't), you need to preprocess the dataset into tfrecords and it is a pain. The OD Api has very cryptic messages and it is very sensitive to the combination of tf version and api version. On the other hand, cool models like efficientdet are more or less easy to use.
MMdetection - very powerful framework, has lots of advanced models and once you understand how to work with it, you can easily work with and of the models it supports. Downside is that some models are slow to arrive (efficientdet, for example)
paddlepaddle - if you know Chinese, this should work ok, maybe. The documentation is a bit behind and usually requires lots of improvisation. Basically it is similar to mmdetection just with a few unique models and a few missing models.
detectron2 - I didn't work with this one, but it seems to support only a few models.
You probably need first to define for yourself what do you want to do and then choose.
Good luck!
It is not that trivial. Some models run faster with one kind of framework others with another. Furthermore, it depends on the hardware as well. See this blog. If inference is your only concern, then you can develop your model in any of the popular frameworks like TensorFlow, PyTorch, etc. In the end convert your model to ONNX format and benchmark its performance with DNN-Bench to choose the best inference engine for your application.

What is Google's business model for Tensorflow? also why did Baidu develop PaddlePaddle

I heard Google has over 100 engineers working on Tensorflow. So, what does Google gain from distributing this expensive engine for free? Will Google later charge corporate Tensorflow users? ?
What is google’s plan for Tensorflow? will it be free forever? like a deep learning version of python?
Some people tell me it's to reduce new employee training time. If so, why did Baidu develop it's own deep learning library when that means they should spend extra time training it's employees who are used to using Tensorflow, how to use Baidu's deep learning library
Well if everyone is using tensorflow there are more contributions made to it by the public. That helps google for free.
Even if it doesn't become a product that they sell they can still make money from it.
The thing is they might be able to sell services around it like lessons. They can also sell hardware specifically optimized for tensorflow etc.
Almost every company had its own machine learning framework. The reason they open sourced them was because each of theirs were going to fall much behind if it wasn't open source. A prime example is how Torch was doing so great up until tensorflow became open source as well. (With google's backing and because it's in python instead of lua are a few reasons tf became more popular).