tf.estimator.train_and_evaluate got wrong Evaluation accuray and loss - tensorflow

I use tf.estimator.train_and_evaluate to train and evaluate my model. This is my code:
import tensorflow as tf
import numpy as np
from tensorflow.contrib.slim.nets import resnet_v2
import tensorflow.contrib.slim as slim
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data(path='mnist.npz')
x_train = np.expand_dims(x_train, 3).astype(np.float32)[:5000]
y_train = y_train.astype(np.int32)[:5000]
x_test = np.expand_dims(x_test, 3).astype(np.float32)[:1000]
y_test = y_test.astype(np.int32)[:1000]
tf.logging.set_verbosity(tf.logging.INFO)
cls_num = 10
def model_fn(features, labels, mode):
is_training = False
if mode == tf.estimator.ModeKeys.TRAIN:
is_training = True
with slim.arg_scope(resnet_v2.resnet_arg_scope()):
logits, endpoints = resnet_v2.resnet_v2_50(features,
num_classes=cls_num,
is_training=is_training,
reuse=None)
logits = tf.squeeze(logits, [1, 2])
preds = tf.argmax(logits, 1)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
accuracy = tf.metrics.accuracy(labels=labels, predictions=preds)
metrics = {'accuracy': accuracy}
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(mode, loss=loss, eval_metric_ops=metrics)
optimizer = tf.train.AdagradOptimizer(learning_rate=0.1)
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
def process_fn(feature, label):
feature = tf.expand_dims(feature, 3)
return feature, label
def train_input_fn():
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
#dataset.map(process_fn)
dataset = dataset.repeat(1).batch(8)
return dataset
def eval_input_fn():
dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))
dataset = dataset.repeat(1).batch(8)
return dataset
estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir='logs')
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn)
eval_specs = tf.estimator.EvalSpec(input_fn=eval_input_fn)
for _ in xrange(10):
tf.estimator.train_and_evaluate(estimator, train_spec, eval_specs)
The training step is ok and the loss became very small (about 0.001), but the evaluation result is wrong (the following is the evaluaiton log):
...
INFO:tensorflow:Saving dict for global step 625: accuracy = 0.5, global_step = 625, loss = 1330830600000.0
...
The task is very simple, just a binaray classfication. I don not think it is overfitting. Is there something wrong for my evaluation code?

Related

BERT WITH BiDirectional LSTM loss is not decreasing

I am trying port Keras Semantic Similarity example to Pytorch Lightening. I followed all the necessary steps from keras example but somehow loss not at all decreasing. i am just curious where did i make mistake?
Here is the colab link
PyTorch Model
MAX_LENGTH = 128
from transformers import BertModel,AdamW
import pytorch_lightning as pl
class BertWithLSTM(pl.LightningModule):
def __init__(self,train_path,test_path, val_path,num_classes):
super().__init__()
self.bert = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
self.bert.trainable = False
self.lstm = nn.LSTM(input_size=768, hidden_size=64, batch_first=True, bidirectional=True, dropout=0.3)
self.dropout = nn.Dropout(p=0.3)
self.output = nn.Linear(MAX_LENGTH*2,3)
self.num_classes = num_classes
self.train_path = train_path
self.test_path = test_path
self.val_path = val_path
self.criterion = nn.CrossEntropyLoss()
def train_dataloader(self):
train_dataset = CustomDataset(csv_path=self.train_path)
return DataLoader(dataset=train_dataset, batch_size=32, shuffle=False)
def test_dataloader(self):
test_dataset = CustomDataset(csv_path=self.test_path)
return DataLoader(dataset=test_dataset)
def val_dataloader(self):
val_dataset = CustomDataset(csv_path=self.val_path)
return DataLoader(dataset=val_dataset, batch_size=16, shuffle=True)
def training_step(self,train_batch, batch_idx):
input_ids,attention_mask,token_type_ids,labels = train_batch
output = self(input_ids, attention_mask, token_type_ids, labels)
loss = F.cross_entropy(output, labels)
self.log("training_loss", loss, on_epoch=True, prog_bar=True, logger=True)
return loss
def validation_step(self,val_batch, batch_idx):
input_ids,attention_mask,token_type_ids,labels = val_batch
output = self(input_ids, attention_mask, token_type_ids, labels)
loss = F.cross_entropy(output, labels)
self.log("val_loss", loss, on_epoch=True, prog_bar=True, logger=True)
def forward(self, input_ids,attention_mask,token_type_ids, label ):
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
sequence_output = bert_output.last_hidden_state
output, (hidden_state, c_n) = self.lstm(sequence_output)
avg_pool = torch.mean(output, dim=1)
max_pool,indices = torch.max(output,dim=1)
output = torch.cat((avg_pool,max_pool),1)
output = self.output(output)
return output
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters())
return optimizer

Facing error in tensorflow2.0 while building tf_estimator

import custom_model as CM
import input_pipeline as IP
import tensorflow as tf
def custom_estimator(features, labels, mode):
logits = CM.model_net(features=features, n_classes=5)
prediction = tf.keras.layers.Activation('softmax')(logits)
preds_dict = {'class': tf.argmax(input=prediction, axis=1),
'probabilities': prediction,
'logits': logits}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode,
predictions=preds_dict)
# Compute loss
labels = tf.reshape(labels, (BATCH_SIZE, 5))
loss = tf.keras.losses.categorical_crossentropy(y_true=labels,
y_pred=prediction)
# Compute evaluation metrics
accuracy = custom_accuracy(labels, prediction)
metrics = {'accuracy': accuracy}
tf.summary.scalar('accuracy', accuracy)
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(mode, loss=loss,
eval_metric_ops=metrics)
optimizer = tf.keras.optimizers.Adam()
train_op = optimizer.minimize(loss)
return tf.estimator.EstimatorSpec(mode, loss=loss,
train_op=train_op)
# Build tf_estimator
classifier = tf.estimator.Estimator(model_fn=custom_estimator,
model_dir=model_dir)
# Train the estimator
TRAIN_FILES, TRAIN_LABELS = IP.map_file_to_label(data_dir=data_dir)
TRAIN = classifier.train(input_fn=lambda:
IP.imgs_input_fn(TRAIN_FILES, labels=TRAIN_LABELS,
perform_shuffle=True, repeat_count=EPOCHS,
batch_size=BATCH_SIZE),
steps=int(len(TRAIN_LABELS)/BATCH_SIZE))
This is the error I am facing with TensorFlow-2.0. Error image & code for the same attached here. Please help.
If I enter var_list=None then the error is "ValueError: Passed in object of type , not tf.Tensor"
First of all, I don't think this Estimator code example is TensorFlow 2.0 compliant. In any case, if peradventure you're using the 1.x versions, replace:
train_op = optimizer.minimize(loss)
with this:
train_op = optimizer.minimize(
loss=average_loss, global_step=tf.train.get_global_step())
If indeed, you're using TensorFlow 2.0, then replace with:
train_op = optimizer.minimize(
loss=average_loss, global_step=tf.compat.v1.train.get_global_step())

got shape [4575, 32, 32, 3], but wanted [4575] Tensorflow

I'm a newbie of Tensorflow. I have created CNNs of Tensorflow followingthis topic : A Guide to TF Layers: Building a Convolutional Neural Network
I want to create CNNs to using it for training traffic sign dataset. The dataset I use is : BelgiumTS. It includes two part, one part stores images for training, second parth stores images for testing. All of this is .ppm format.
I define a method to load the dataset :
def load_data(data_dir):
"""Load Data and return two numpy array"""
directories = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir,d))]
list_labels = []
list_images = []
for d in directories:
label_dir = os.path.join(data_dir,d)
file_names = [os.path.join(label_dir,f) for f in os.listdir(label_dir) if f.endswith(".ppm")]
for f in file_names:
list_images.append(skimage.data.imread(f))
list_labels.append(int(d))
#resize images to 32x32 pixel
list_images32 = [skimage.transform.resize(image,(32,32)) for image in list_images]
#Got Error "Value passed to parameter 'input' has DataType float64 not in list of allowed values: float16, float32" if I don't add this line
list_images32 = tf.cast(list_images32,tf.float32)
images = np.array(list_images32)
labels = np.asarray(list_labels,dtype=int32)
return images,labels
And this is CNNs define :
def cnn_model_fn(features, labels, mode):
#Input layer
input_layer = tf.reshape(features["x"],[-1,32,32,1])
#Convolutional layer 1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 1
pool1 = tf.layers.max_pooling2d(inputs=conv1,pool_size=[2,2],strides=2)
#Convolutional layer 2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 2
pool2 = tf.layers.max_pooling2d(inputs=conv2,pool_size=[2,2],strides=2)
#Dense layer
pool2_flat = tf.reshape(pool2,[-1,7*7*64])
dense = tf.layers.dense(inputs=pool2_flat,units=1024,activation=tf.nn.relu)
#Dropout
dropout = tf.layers.dropout(inputs=dense,rate=0.4,training=mode == tf.estimator.ModeKeys.TRAIN)
#Logits layer
logits = tf.layers.dense(inputs=dropout,units=10)
predictions = {
"classes": tf.argmax(input=logits,axis=1),
"probabilities": tf.nn.softmax(logits,name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode,predictions=predictions)
#Calculate Loss Value
onehot_labels = tf.one_hot(indices=tf.cast(labels,tf.int32),depth=10)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels,logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss = loss,
global_step = tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,train_op=train_op)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels,predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,eval_metric_ops=eval_metric_ops)
I run my app in main :
def main(unused_argv):
# Load training and eval data
train_data_dir = "W:/Projects/AutoDrive/Training"
test_data_dir = "W:/Projects/AutoDrive/Testing"
images,labels = load_data(train_data_dir)
test_images,test_labels = load_data(test_data_dir)
# Create the Estimator
autoDrive_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/autoDrive_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": images},
y=labels,
batch_size=100,
num_epochs=None,
shuffle=True)
autoDrive_classifier.train(
input_fn=train_input_fn,
steps=10000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": test_images},
y=test_labels,
num_epochs=1,
shuffle=False)
eval_results = autoDrive_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
But when I run it, I got this error : ValueError: Argument must be a dense tensor ... got shape [4575, 32, 32, 3], but wanted [4575] Did I lost something ?
Finally, this is full code :
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import os
import skimage.data
import skimage.transform
import matplotlib
import matplotlib.pyplot as plt
tf.logging.set_verbosity(tf.logging.INFO)
def load_data(data_dir):
"""Load Data and return two lists"""
directories = [d for d in os.listdir(data_dir) if
os.path.isdir(os.path.join(data_dir,d))]
list_labels = []
list_images = []
for d in directories:
label_dir = os.path.join(data_dir,d)
file_names = [os.path.join(label_dir,f) for f in os.listdir(label_dir) if f.endswith(".ppm")]
for f in file_names:
list_images.append(skimage.data.imread(f))
list_labels.append(int(d))
list_images32 = [skimage.transform.resize(image,(32,32)) for image in list_images]
list_images32 = tf.cast(list_images32,tf.float32)
images = np.array(list_images32)
labels = np.asarray(list_labels,dtype=int32)
return images,labels
def cnn_model_fn(features, labels, mode):
#Input layer
input_layer = tf.reshape(features["x"],[-1,32,32,1])
#Convolutional layer 1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 1
pool1 = tf.layers.max_pooling2d(inputs=conv1,pool_size=[2,2],strides=2)
#Convolutional layer 2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 2
pool2 = tf.layers.max_pooling2d(inputs=conv2,pool_size=[2,2],strides=2)
#Dense layer
pool2_flat = tf.reshape(pool2,[-1,7*7*64])
dense = tf.layers.dense(inputs=pool2_flat,units=1024,activation=tf.nn.relu)
#Dropout
dropout = tf.layers.dropout(inputs=dense,rate=0.4,training=mode == tf.estimator.ModeKeys.TRAIN)
#Logits layer
logits = tf.layers.dense(inputs=dropout,units=10)
predictions = {
"classes": tf.argmax(input=logits,axis=1),
"probabilities": tf.nn.softmax(logits,name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode,predictions=predictions)
#Calculate Loss Value
onehot_labels = tf.one_hot(indices=tf.cast(labels,tf.int32),depth=10)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels,logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss = loss,
global_step = tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,train_op=train_op)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels,predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,eval_metric_ops=eval_metric_ops)
def main(unused_argv):
# Load training and eval data
train_data_dir = "W:/Projects/TSRecognition/Training"
test_data_dir = "W:/Projects/TSRecognition/Testing"
images,labels = load_data(train_data_dir)
test_images,test_labels = load_data(test_data_dir)
# Create the Estimator
TSRecognition_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/TSRecognition_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": images},
y=labels,
batch_size=100,
num_epochs=None,
shuffle=True)
TSRecognition_classifier.train(
input_fn=train_input_fn,
steps=10000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": test_images},
y=test_labels,
num_epochs=1,
shuffle=False)
eval_results = TSRecognition_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()
Short answer for your code:
Get rid of the np.array and np.asarray calls in your load_data function. In particular, change:
list_images32 = [skimage.transform.resize(image,(32,32)) for image in list_images]
...to...
list_images32 = [skimage.transform.resize(image,(32,32)).astype(np.float32).tolist() for image in list_images]
...and return list_images32 AS IS from your load_data function. Don't "wrap it" with the np.asarray() call. The tolist() part of my suggestion is what is important. With the astype() call I'm just suggesting doing in numpy something you're doing in TensorFlow.
Simply getting rid of the np.asarray you have on list_labels should suffice for your labels.
The full answer for those that want to understand what's going on...
The "got shape...but wanted" exception is thrown from exactly one place in TensorFlow (tensor_util.py) and the reason is this function:
def _GetDenseDimensions(list_of_lists):
"""Returns the inferred dense dimensions of a list of lists."""
if not isinstance(list_of_lists, (list, tuple)):
return []
elif not list_of_lists:
return [0]
else:
return [len(list_of_lists)] + _GetDenseDimensions(list_of_lists[0])
It is trying to traverse what it assumes are nested plain Python lists or plain Python tuples; it doesn't know what to do with the Numpy array type it finds in your data structure because of the np.array/np.asarray calls.

How to use trained model in tensorflow, using CNNs to detect object with bounding box

I have built model in tensorflow use CNNs with accuracy over 90%. It's really worked but I don't know how to use this model to detect object with bounding box which I have trained. My model include many class and once label asociated with name of class. I'd read some way about ssd, it can do that but I don't really understand how it work. My CNNs below :
def cnn_model_fn(features,labels,mode):
#Input layer
input_layer = tf.reshape(features["x"],[-1,28,28,1])
#Convolutional layer 1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling Layer 1
pool1 = tf.layers.max_pooling2d(inputs=conv1,pool_size=[2,2],strides=2)
#Convolutional layer 2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 2
pool2 = tf.layers.max_pooling2d(inputs=conv2,pool_size=[2,2],strides=2)
#Debse layer
pool2_flat = tf.reshape(pool2,[-1,7*7*64])
dense = tf.layers.dense(inputs=pool2_flat,units=1024,activation=tf.nn.relu)
#Dropout
dropout = tf.layers.dropout(inputs=dense,rate=0.4,training=mode == tf.estimator.ModeKeys.TRAIN)
#Logits layer
logits = tf.layers.dense(inputs=dropout,units=10)
predictions = {
"classes":tf.argmax(input=logits,axis=1),
"probabilities":tf.nn.softmax(logits,name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode,predictions=predictions)
#Calculate Loss
onehot_labels = tf.one_hot(indices=tf.cast(labels,tf.int32),depth=10)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels,logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,train_op=train_op)
eval_metric_ops = {
"accuracy":tf.metrics.accuracy(labels=labels,predictions=predictions["classes"])
}
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,eval_metric_ops=eval_metric_ops)
And I run my app with main:
def main(unused_argv):
# Load training and eval data
train_data_dir = "W:/Projects/AutoDrive/Training"
test_data_dir = "W:/Projects/AutoDrive/Testing"
images,labels = load_data(train_data_dir)
test_images,test_labels = load_data(test_data_dir)
print("Labels: {0} \nImages: {1}".format(len(set(labels)),len(images)))
for image in images[:5]:
print("shape: {0}, min: {1}, max: {2}".format(image.shape, image.min(), image.max()))
images = [skimage.transform.resize(image,(28,28,1)) for image in images]
for image in images[:5]:
print("shape: {0}, min: {1}, max: {2}".format(image.shape, image.min(), image.max()))
images = np.asarray(images,dtype=np.float32)
labels = np.asarray(labels,dtype=np.int32)
# Create the Estimator
TSRecognition_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/TSRecognition_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": images},
y=labels,
batch_size=100,
num_epochs=None,
shuffle=True)
TSRecognition_classifier.train(
input_fn=train_input_fn,
steps=20000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": test_images},
y=test_labels,
num_epochs=1,
shuffle=False)
eval_results = TSRecognition_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
And this is full code if you want to see:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import os
import skimage.data
import skimage.transform
import matplotlib
import matplotlib.pyplot as plt
tf.logging.set_verbosity(tf.logging.INFO)
def load_data(data_dir):
"""Load Data and return two lists"""
directories = [d for d in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir,d))]
list_labels = []
list_images = []
for d in directories:
label_dir = os.path.join(data_dir,d)
file_names = [os.path.join(label_dir,f) for f in os.listdir(label_dir) if f.endswith(".ppm")]
for f in file_names:
list_images.append(skimage.data.imread(f))
list_labels.append(int(d))
return list_images,list_labels
def display_images_and_labels(images,labels):
unique_labels = set(labels)
plt.figure(figsize=(15,15))
i = 1
for label in unique_labels:
image = images[labels.index(label)]
plt.subplot(8,8,i)
plt.axis('off')
plt.title("Label {0} ({1})".format(label,labels.count(label)))
i += 1
_ = plt.imshow(image)
plt.show()
def cnn_model_fn(features,labels,mode):
#Input layer
input_layer = tf.reshape(features["x"],[-1,28,28,1])
#Convolutional layer 1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling Layer 1
pool1 = tf.layers.max_pooling2d(inputs=conv1,pool_size=[2,2],strides=2)
#Convolutional layer 2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5,5],
padding="same",
activation=tf.nn.relu)
#Pooling layer 2
pool2 = tf.layers.max_pooling2d(inputs=conv2,pool_size=[2,2],strides=2)
#Debse layer
pool2_flat = tf.reshape(pool2,[-1,7*7*64])
dense = tf.layers.dense(inputs=pool2_flat,units=1024,activation=tf.nn.relu)
#Dropout
dropout = tf.layers.dropout(inputs=dense,rate=0.4,training=mode == tf.estimator.ModeKeys.TRAIN)
#Logits layer
logits = tf.layers.dense(inputs=dropout,units=10)
predictions = {
"classes":tf.argmax(input=logits,axis=1),
"probabilities":tf.nn.softmax(logits,name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode,predictions=predictions)
#Calculate Loss
onehot_labels = tf.one_hot(indices=tf.cast(labels,tf.int32),depth=10)
loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels,logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,train_op=train_op)
eval_metric_ops = {"accuracy":tf.metrics.accuracy(labels=labels,predictions=predictions["classes"])
}
return tf.estimator.EstimatorSpec(mode=mode,loss=loss,eval_metric_ops=eval_metric_ops)
def main(unused_argv):
# Load training and eval data
train_data_dir = "W:/Projects/AutoDrive/Training"
test_data_dir = "W:/Projects/AutoDrive/Testing"
images,labels = load_data(train_data_dir)
test_images,test_labels = load_data(test_data_dir)
print("Labels: {0} \nImages: {1}".format(len(set(labels)),len(images)))
for image in images[:5]:
print("shape: {0}, min: {1}, max: {2}".format(image.shape, image.min(), image.max()))
images = [skimage.transform.resize(image,(28,28,1)) for image in images]
for image in images[:5]:
print("shape: {0}, min: {1}, max: {2}".format(image.shape, image.min(), image.max()))
images = np.asarray(images,dtype=np.float32)
labels = np.asarray(labels,dtype=np.int32)
# Create the Estimator
TSRecognition_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/TSRecognition_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": images},
y=labels,
batch_size=100,
num_epochs=None,
shuffle=True)
TSRecognition_classifier.train(
input_fn=train_input_fn,
steps=20000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": test_images},
y=test_labels,
num_epochs=1,
shuffle=False)
eval_results = TSRecognition_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()
Addtionally, I've seen video which I think it can help me. But they just help me train single object. Any ideas can help me ?
There are some CNN that can output bounding boxes, and some CNN that only classify the input images. Yours is the second type. If you want bounding boxes with tensorflow, you can use the object detection API that allows you to build multi-class SSD and faster-rcnn : https://github.com/tensorflow/models/tree/master/research/object_detection

the same model converged in keras but not tensorflow, how is that possible?

I'm trying to work with lstm in tensorflow, but I got to the point I can't make a simple imdb sentiment model to converge.
I took a keras model and tried to duplicate the exact same model in tensorflow, in keras it trains and converge however in tensorflow it is just stuck at some point (0.69 loss).
I tried to make them as equal as possible, the only difference I can tell of is that in keras the padding is before the sequence, while in tensorflow I use 'post' padding due to the conventions in tensorflow.
Any idea whats wrong with my tensorflow model?
from __future__ import print_function
import random
import numpy as np
from tensorflow.contrib.keras.python.keras.preprocessing import sequence
from tensorflow.contrib.keras.python.keras.models import Sequential
from tensorflow.contrib.keras.python.keras.layers import Dense, Dropout, Activation
from tensorflow.contrib.keras.python.keras.layers import Embedding
from tensorflow.contrib.keras.python.keras.layers import LSTM
from tensorflow.contrib.keras.python.keras.layers import Conv1D, MaxPooling1D
from tensorflow.contrib.keras.python.keras.datasets import imdb
import tensorflow as tf
# Embedding
max_features = 30000
maxlen = 2494
embedding_size = 128
# Convolution
kernel_size = 5
filters = 64
pool_size = 4
# LSTM
lstm_output_size = 70
# Training
batch_size = 30
epochs = 2
class TrainData:
def __init__(self, batch_sz=batch_size):
(x_train, y_train), (_, _) = imdb.load_data(num_words=max_features)
y_train = [[int(x == 1), int(x != 1)] for x in y_train]
self._batch_size = batch_sz
self._train_data = sequence.pad_sequences(x_train, padding='pre')
self._train_labels = y_train
def next_batch(self):
if len(self._train_data) < self._batch_size:
self.__init__()
batch_x, batch_y = self._train_data[:self._batch_size], self._train_labels[:self._batch_size]
self._train_data = self._train_data[self._batch_size:]
self._train_labels = self._train_labels[self._batch_size:]
return batch_x, batch_y
def batch_generator(self):
while True:
if len(self._train_data) < self._batch_size:
self.__init__()
batch_x, batch_y = self._train_data[:self._batch_size], self._train_labels[:self._batch_size]
self._train_data = self._train_data[self._batch_size:]
self._train_labels = self._train_labels[self._batch_size:]
yield batch_x, batch_y
def get_num_batches(self):
return int(len(self._train_data) / self._batch_size)
def length(sequence):
used = tf.sign(tf.abs(sequence))
length = tf.reduce_sum(used, reduction_indices=1)
length = tf.cast(length, tf.int32)
return length
def get_model(x, y):
embedding = tf.get_variable("embedding", [max_features, embedding_size], dtype=tf.float32)
embedded_x = tf.nn.embedding_lookup(embedding, x)
print(x)
print(embedded_x)
print(length(x))
cell_1 = tf.contrib.rnn.BasicLSTMCell(lstm_output_size)
output_1, state_1 = tf.nn.dynamic_rnn(cell_1, embedded_x, dtype=tf.float32, scope="rnn_layer1",
sequence_length=length(x))
# Select last output.
last_index = tf.shape(output_1)[1] - 1
# reshaping to [seq_length, batch_size, num_units]
output = tf.transpose(output_1, [1, 0, 2])
last = tf.gather(output, last_index)
# Softmax layer
with tf.name_scope('fc_layer'):
weight = tf.get_variable(name="weights", shape=[lstm_output_size, 2])
bias = tf.get_variable(shape=[2], name="bias")
logits = tf.matmul(last, weight) + bias
loss = tf.losses.softmax_cross_entropy(y, logits=logits)
optimizer = tf.train.AdamOptimizer()
optimize_step = optimizer.minimize(loss=loss)
return loss, optimize_step
def tf_model():
x_holder = tf.placeholder(tf.int32, shape=[None, maxlen])
y_holder = tf.placeholder(tf.int32, shape=[None, 2])
loss, opt_step = get_model(x_holder, y_holder)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 0
for epoch in range(10):
cost_epochs = []
train_data = TrainData()
cost_batch = 0
for batch in range(train_data.get_num_batches()):
x_train, y_train = train_data.next_batch()
_, cost_batch = sess.run([opt_step, loss],
feed_dict={x_holder: x_train,
y_holder: y_train})
cost_epochs.append(cost_batch)
step += 1
# if step % 100 == 0:
print("Epoch: " + str(epoch))
print("\tcost: " + str(np.mean(cost_epochs)))
def keras_model():
# print('Loading data...')
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
y_test = [[int(x == 1), int(x != 1)] for x in y_test]
x_test = sequence.pad_sequences(x_test, maxlen=maxlen, padding='pre')
model = Sequential()
model.add(Embedding(max_features, embedding_size, input_length=maxlen))
model.add(LSTM(lstm_output_size))
model.add(Dense(2))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
print('Train...')
data = TrainData()
model.fit_generator(data.batch_generator(), steps_per_epoch=data.get_num_batches(),
epochs=epochs,
validation_data=(x_test, y_test))
if __name__ == '__main__':
# keras_model()
tf_model()
EDIT
When I limit the sequence length to 100 both models converge, so I assume there is something different in the the lstm layer.
Check the initial values of your operations. In my case the adadelta optimizer in keras had initial learning rate of 1.0 and in tf.keras it had 0.001 so in the mnist dataset it converged much slowly.