Apply same Keras Tensorflow preprocessing transform to several images - tensorflow

I'm currently building my own custom generator with data augmentation. I have to apply the same transformation to two images, the train one and the target one, but functions only works one by one. Any ideas how to apply the exact transformation in both images?
This is one function I'm trying:
tf.keras.preprocessing.image.random_zoom
The code for the generator:
def generator(data, batch_size = 32, data_augmentation = False):
batch_number = 0
while True:
original_train = []
original_target = []
train = []
target = []
if batch_number * batch_size >= data.shape[0]:
batch_number = 0
for x in train_pd.values[batch_number * batch_size: (batch_number + 1) * batch_size ]:
train_image = load_image_as_array(train_path+'images/'+x[0]+'.png').reshape(101,101,1)
target_image = load_image_as_array(train_path+'masks/'+x[0]+'.png').reshape(101,101,1)
original_train.append(train_image)
original_target.append(target_image)
if data_augmentation:
train_image = random_zoom(train_image, (.25,.25))
target_image = random_zoom(target_image, (.25,.25))
train.append(train_image)
target.append(target_image)
batch_number += 1
yield np.array(train), np.array(target), np.array(original_train), np.array(original_target)

Ok. It seems that it applies the exact transformation besides you call the function two times.

Related

How to build a custom question-answering head when using hugginface transformers?

Using the TFBertForQuestionAnswering.from_pretrained() function, we get a predefined head on top of BERT together with a loss function that are suitable for this task.
My question is how to create a custom head without relying on TFAutoModelForQuestionAnswering.from_pretrained().
I want to do this because there is no place where the architecture of the head is explained clearly. By reading the code here we can see the architecture they are using, but I can't be sure I understand their code 100%.
Starting from How to Fine-tune HuggingFace BERT model for Text Classification is good. However, it covers only the classification task, which is much simpler.
'start_positions' and 'end_positions' are created following this tutorial.
So far, I've got the following:
train_dataset
# Dataset({
# features: ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'],
# num_rows: 99205
# })
train_dataset.set_format(type='tensorflow', columns=['input_ids', 'token_type_ids', 'attention_mask'])
features = {x: train_dataset[x] for x in ['input_ids', 'token_type_ids', 'attention_mask']}
labels = [train_dataset[x] for x in ['start_positions', 'end_positions']]
labels = np.array(labels).T
tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(16)
input_ids = tf.keras.layers.Input(shape=(256,), dtype=tf.int32, name='input_ids')
token_type_ids = tf.keras.layers.Input(shape=(256,), dtype=tf.int32, name='token_type_ids')
attention_mask = tf.keras.layers.Input((256,), dtype=tf.int32, name='attention_mask')
bert = TFAutoModel.from_pretrained("bert-base-multilingual-cased")
output = bert([input_ids, token_type_ids, attention_mask]).last_hidden_state
output = tf.keras.layers.Dense(2, name="qa_outputs")(output)
model = tf.keras.models.Model(inputs=[input_ids, token_type_ids, attention_mask], outputs=output)
num_train_epochs = 3
num_train_steps = len(tfdataset) * num_train_epochs
optimizer, schedule = create_optimizer(
init_lr=2e-5,
num_warmup_steps=0,
num_train_steps=num_train_steps,
weight_decay_rate=0.01
)
def qa_loss(labels, logits):
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=tf.keras.losses.Reduction.NONE
)
start_loss = loss_fn(labels[0], logits[0])
end_loss = loss_fn(labels[1], logits[1])
return (start_loss + end_loss) / 2.0
model.compile(
loss=loss_fn,
optimizer=optimizer
)
model.fit(tfdataset, epochs=num_train_epochs)
And I am getting the following error:
ValueError: `labels.shape` must equal `logits.shape` except for the last dimension. Received: labels.shape=(2,) and logits.shape=(256, 2)
It is complaining about the shape of the labels. This should not happen since I am using SparseCategoricalCrossentropy loss.
For future reference, I actually found a solution, which is just editing the TFBertForQuestionAnswering class itself. For example, I added an additional layer in the following code and trained the model as usual and it worked.
from transformers import TFBertPreTrainedModel
from transformers import TFBertMainLayer
from transformers.modeling_tf_utils import TFQuestionAnsweringLoss, get_initializer, input_processing
from transformers.modeling_tf_outputs import TFQuestionAnsweringModelOutput
from transformers import BertConfig
class MY_TFBertForQuestionAnswering(TFBertPreTrainedModel, TFQuestionAnsweringLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [
r"pooler",
r"mlm___cls",
r"nsp___cls",
r"cls.predictions",
r"cls.seq_relationship",
]
def __init__(self, config: BertConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.bert = TFBertMainLayer(config, add_pooling_layer=False, name="bert")
# This is the dense layer I added
self.my_dense = tf.keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
name="my_dense",
)
self.qa_outputs = tf.keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="qa_outputs",
)
def call(
self,
input_ids = None,
attention_mask = None,
token_type_ids = None,
position_ids = None,
head_mask = None,
inputs_embeds = None,
output_attentions = None,
output_hidden_states = None,
return_dict = None,
start_positions = None,
end_positions= None,
training = False,
**kwargs,
):
r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
start_positions=start_positions,
end_positions=end_positions,
training=training,
kwargs_call=kwargs,
)
outputs = self.bert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
sequence_output = outputs[0]
# You also have to add it here
my_logits = self.my_dense(inputs=sequence_output)
logits = self.qa_outputs(inputs=my_logits)
start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
start_logits = tf.squeeze(input=start_logits, axis=-1)
end_logits = tf.squeeze(input=end_logits, axis=-1)
loss = None
if inputs["start_positions"] is not None and inputs["end_positions"] is not None:
labels = {"start_position": inputs["start_positions"]}
labels["end_position"] = inputs["end_positions"]
loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
if not inputs["return_dict"]:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFQuestionAnsweringModelOutput(
start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns
)

How to show the class distribution in Dataset object in Tensorflow

I am working on a multi-class classification task using my own images.
filenames = [] # a list of filenames
labels = [] # a list of labels corresponding to the filenames
full_ds = tf.data.Dataset.from_tensor_slices((filenames, labels))
This full dataset will be shuffled and split into train, valid and test dataset
full_ds_size = len(filenames)
full_ds = full_ds.shuffle(buffer_size=full_ds_size*2, seed=128) # seed is used for reproducibility
train_ds_size = int(0.64 * full_ds_size)
valid_ds_size = int(0.16 * full_ds_size)
train_ds = full_ds.take(train_ds_size)
remaining = full_ds.skip(train_ds_size)
valid_ds = remaining.take(valid_ds_size)
test_ds = remaining.skip(valid_ds_size)
Now I am struggling to understand how each class is distributed in train_ds, valid_ds and test_ds. An ugly solution is to iterate all the element in the dataset and count the occurrence of each class. Is there any better way to solve it?
My ugly solution:
def get_class_distribution(dataset):
class_distribution = {}
for element in dataset.as_numpy_iterator():
label = element[1]
if label in class_distribution.keys():
class_distribution[label] += 1
else:
class_distribution[label] = 0
# sort dict by key
class_distribution = collections.OrderedDict(sorted(class_distribution.items()))
return class_distribution
train_ds_class_dist = get_class_distribution(train_ds)
valid_ds_class_dist = get_class_distribution(valid_ds)
test_ds_class_dist = get_class_distribution(test_ds)
print(train_ds_class_dist)
print(valid_ds_class_dist)
print(test_ds_class_dist)
The answer below assumes:
there are five classes.
labels are integers from 0 to 4.
It can be modified to suit your needs.
Define a counter function:
def count_class(counts, batch, num_classes=5):
labels = batch['label']
for i in range(num_classes):
cc = tf.cast(labels == i, tf.int32)
counts[i] += tf.reduce_sum(cc)
return counts
Use the reduce operation:
initial_state = dict((i, 0) for i in range(5))
counts = train_ds.reduce(initial_state=initial_state,
reduce_func=count_class)
print([(k, v.numpy()) for k, v in counts.items()])
A solution inspired by user650654 's answer, only using TensorFlow primitives (with tf.unique_with_counts instead of for loop):
In theory, this should have better performance and scale better to large datasets, batches or class count.
num_classes = 5
#tf.function
def count_class(counts, batch):
y, _, c = tf.unique_with_counts(batch[1])
return tf.tensor_scatter_nd_add(counts, tf.expand_dims(y, axis=1), c)
counts = train_ds.reduce(
initial_state=tf.zeros(num_classes, tf.int32),
reduce_func=count_class)
print(counts.numpy())
Similar and simpler version with numpy that actually had better performances for my simple use-case:
count = np.zeros(num_classes, dtype=np.int32)
for _, labels in train_ds:
y, _, c = tf.unique_with_counts(labels)
count[y.numpy()] += c.numpy()
print(count)

Expected to see 3 array(s), but instead got the following list of 1 arrays:

I am trying to train a triple loss model using a fit_generator. it requires three input and no output. so i have a function that generates hard triplets. the output from the triplets generator has a shape of (3,5,279) which is 3 inputs(anchor,positive and negative) for 5 batches and a total of 279 features. When i run the fit_generator it throws this error that "the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 3 array(s), but instead got the following list of 1 arrays" meanwhile i have passed a list of three arrays. the code is below. it works when i use the fit, however, i want to always call the generator function to generate my triplets as my batches. thanks in advance..this has taken me three days
def load_data():
path = "arrhythmia_data.txt"
f = open( path, "r")
data = []
#remove line breaker, comma separate and store in array
for line in f:
line = line.replace('\n','').replace('?','0')
line = line.split(",")
data.append(line)
f.close()
data = np.array(data).astype(np.float64)
#print(data.shape)
#create the class labels for input data
Y_train = data[:,-1:]
train = data[:,:-1]
normaliser = preprocessing.MinMaxScaler()
train = normaliser.fit_transform(train)
val = train[320:,:]
train = train[:320,:]
#create one hot encoding of the class labels of the data and separate them into train and test data
lb = LabelBinarizer()
encode = lb.fit_transform(Y_train)
nb_classes = int(len(encode[0]))
#one_hot_labels = keras.utils.to_categorical(labels, num_classes=10) this could also be used for one hot encoding
Y_val_e = encode[320:,:]
Y_train_e = encode[:320,:]
print(Y_train_e[0])
print(np.argmax(Y_train_e[0]))
val_in = []
train_in = []
#grouping and sorting the input data based on label id or name
for n in range(nb_classes):
images_class_n = np.asarray([row for idx,row in enumerate(train) if np.argmax(Y_train_e[idx])==n])
train_in.append(images_class_n)
images_class_n = np.asarray([row for idx,row in enumerate(val) if np.argmax(Y_val_e[idx])==n])
val_in.append(images_class_n)
#print(train_in[0].shape)
return train_in,val_in,Y_train_e,Y_val_e,nb_classes
train_in,val,Y_train,Y_val,nb_classes = load_data()
input_shape = (train_in[0].shape[1],)
def build_network(input_shape , embeddingsize):
'''
Define the neural network to learn image similarity
Input :
input_shape : shape of input images
embeddingsize : vectorsize used to encode our picture
'''
#in_ = Input(train.shape)
net = Sequential()
net.add(Dense(128, activation='relu', input_shape=input_shape))
net.add(Dense(128, activation='relu'))
net.add(Dense(256, activation='relu'))
net.add(Dense(4096, activation='sigmoid'))
net.add(Dense(embeddingsize, activation= None))
#Force the encoding to live on the d-dimentional hypershpere
net.add(Lambda(lambda x: K.l2_normalize(x,axis=-1)))
return net
class TripletLossLayer(Layer):
def __init__(self, alpha, **kwargs):
self.alpha = alpha
super(TripletLossLayer, self).__init__(**kwargs)
def triplet_loss(self, inputs):
anchor, positive, negative = inputs
p_dist = K.sum(K.square(anchor-positive), axis=-1)
n_dist = K.sum(K.square(anchor-negative), axis=-1)
return K.sum(K.maximum(p_dist - n_dist + self.alpha, 0), axis=0)
def call(self, inputs):
loss = self.triplet_loss(inputs)
self.add_loss(loss)
return loss
def build_model(input_shape, network, margin=0.2):
'''
Define the Keras Model for training
Input :
input_shape : shape of input images
network : Neural network to train outputing embeddings
margin : minimal distance between Anchor-Positive and Anchor-Negative for the lossfunction (alpha)
'''
# Define the tensors for the three input images
anchor_input = Input(input_shape, name="anchor_input")
positive_input = Input(input_shape, name="positive_input")
negative_input = Input(input_shape, name="negative_input")
# Generate the encodings (feature vectors) for the three images
encoded_a = network(anchor_input)
encoded_p = network(positive_input)
encoded_n = network(negative_input)
#TripletLoss Layer
loss_layer = TripletLossLayer(alpha=margin,name='triplet_loss_layer')([encoded_a,encoded_p,encoded_n])
# Connect the inputs with the outputs
network_train = Model(inputs=[anchor_input,positive_input,negative_input],outputs=loss_layer)
# return the model
return network_train
def get_batch_random(batch_size,s="train"):
# initialize result
triplets=[np.zeros((batch_size,m)) for i in range(3)]
for i in range(batch_size):
#Pick one random class for anchor
anchor_class = np.random.randint(0, nb_classes)
nb_sample_available_for_class_AP = X[anchor_class].shape[0]
#Pick two different random pics for this class => A and P. You can use same anchor as P if there is one one element for anchor
if nb_sample_available_for_class_AP<=1:
continue
[idx_A,idx_P] = np.random.choice(nb_sample_available_for_class_AP,size=2 ,replace=False)
#Pick another class for N, different from anchor_class
negative_class = (anchor_class + np.random.randint(1,nb_classes)) % nb_classes
nb_sample_available_for_class_N = X[negative_class].shape[0]
#Pick a random pic for this negative class => N
idx_N = np.random.randint(0, nb_sample_available_for_class_N)
triplets[0][i,:] = X[anchor_class][idx_A,:]
triplets[1][i,:] = X[anchor_class][idx_P,:]
triplets[2][i,:] = X[negative_class][idx_N,:]
return np.array(triplets)
def get_batch_hard(draw_batch_size,hard_batchs_size,norm_batchs_size,network,s="train"):
if s == 'train':
X = train_in
else:
X = val
#m, features = X[0].shape
#while True:
#Step 1 : pick a random batch to study
studybatch = get_batch_random(draw_batch_size,X)
#Step 2 : compute the loss with current network : d(A,P)-d(A,N). The alpha parameter here is omited here since we want only to order them
studybatchloss = np.zeros((draw_batch_size))
#Compute embeddings for anchors, positive and negatives
A = network.predict(studybatch[0])
P = network.predict(studybatch[1])
N = network.predict(studybatch[2])
#Compute d(A,P)-d(A,N)
studybatchloss = np.sum(np.square(A-P),axis=1) - np.sum(np.square(A-N),axis=1)
#Sort by distance (high distance first) and take the
selection = np.argsort(studybatchloss)[::-1][:hard_batchs_size]
#Draw other random samples from the batch
selection2 = np.random.choice(np.delete(np.arange(draw_batch_size),selection),norm_batchs_size,replace=False)
selection = np.append(selection,selection2)
triplets = [studybatch[0][selection,:], studybatch[1][selection,:],studybatch[2][selection,:]]
triplets = triplets.reshape(triplets.shape[0],triplets.shape[1],triplets.shape[2])
yield triplets
network = build_network(input_shape,embeddingsize=10)
hard = get_batch_hard(5,4,1,network,s="train")
network_train = build_model(input_shape,network)
optimizer = Adam(lr = 0.00006)
network_train.compile(loss=None,optimizer=optimizer)
#this works
#history = network_train.fit(hard,epochs=100,steps_per_epoch=1, verbose=2)
history = network_train.fit_generator(hard,epochs=10,steps_per_epoch=16, verbose=2)
# error:: the list of Numpy arrays that you are passing to your model is not the size the model
expected. Expected to see 3 array(s), but instead got the following list of 1 arrays:
I think that's beacause in your generator you are yielding the 3 inputs array in one list, you need to yield the 3 arrays independently:
triplet_1 = studybatch[0][selection,:]
triplet_2 = studybatch[1][selection,:]
triplet_3 = studybatch[2][selection,:]
yield [triplet_1, triplet_2, triplet_3]

Split a dataset created by Tensorflow dataset API in to Train and Test?

Does anyone know how to split a dataset created by the dataset API (tf.data.Dataset) in Tensorflow into Test and Train?
Assuming you have all_dataset variable of tf.data.Dataset type:
test_dataset = all_dataset.take(1000)
train_dataset = all_dataset.skip(1000)
Test dataset now has first 1000 elements and the rest goes for training.
You may use Dataset.take() and Dataset.skip():
train_size = int(0.7 * DATASET_SIZE)
val_size = int(0.15 * DATASET_SIZE)
test_size = int(0.15 * DATASET_SIZE)
full_dataset = tf.data.TFRecordDataset(FLAGS.input_file)
full_dataset = full_dataset.shuffle()
train_dataset = full_dataset.take(train_size)
test_dataset = full_dataset.skip(train_size)
val_dataset = test_dataset.skip(val_size)
test_dataset = test_dataset.take(test_size)
For more generality, I gave an example using a 70/15/15 train/val/test split but if you don't need a test or a val set, just ignore the last 2 lines.
Take:
Creates a Dataset with at most count elements from this dataset.
Skip:
Creates a Dataset that skips count elements from this dataset.
You may also want to look into Dataset.shard():
Creates a Dataset that includes only 1/num_shards of this dataset.
Disclaimer I stumbled upon this question after answering this one so I thought I'd spread the love
Most of the answers here use take() and skip(), which requires knowing the size of your dataset before hand. This isn't always possible, or is difficult/intensive to ascertain.
Instead what you can do is to essentially slice the dataset up so that 1 every N records becomes a validation record.
To accomplish this, lets start with a simple dataset of 0-9:
dataset = tf.data.Dataset.range(10)
# [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Now for our example, we're going to slice it so that we have a 3/1 train/validation split. Meaning 3 records will go to training, then 1 record to validation, then repeat.
split = 3
dataset_train = dataset.window(split, split + 1).flat_map(lambda ds: ds)
# [0, 1, 2, 4, 5, 6, 8, 9]
dataset_validation = dataset.skip(split).window(1, split + 1).flat_map(lambda ds: ds)
# [3, 7]
So the first dataset.window(split, split + 1) says to grab split number (3) of elements, then advance split + 1 elements, and repeat. That + 1 effectively skips the 1 element we're going to use in our validation dataset.
The flat_map(lambda ds: ds) is because window() returns the results in batches, which we don't want. So we flatten it back out.
Then for the validation data we first skip(split), which skips over the first split number (3) of elements that were grabbed in the first training window, so we start our iteration on the 4th element. The window(1, split + 1) then grabs 1 element, advances split + 1 (4), and repeats.
 
Note on nested datasets:
The above example works well for simple datasets, but flat_map() will generate an error if the dataset is nested. To address this, you can swap out the flat_map() with a more complicated version that can handle both simple and nested datasets:
.flat_map(lambda *ds: ds[0] if len(ds) == 1 else tf.data.Dataset.zip(ds))
#ted's answer will cause some overlap. Try this.
train_ds_size = int(0.64 * full_ds_size)
valid_ds_size = int(0.16 * full_ds_size)
train_ds = full_ds.take(train_ds_size)
remaining = full_ds.skip(train_ds_size)
valid_ds = remaining.take(valid_ds_size)
test_ds = remaining.skip(valid_ds_size)
use code below to test.
tf.enable_eager_execution()
dataset = tf.data.Dataset.range(100)
train_size = 20
valid_size = 30
test_size = 50
train = dataset.take(train_size)
remaining = dataset.skip(train_size)
valid = remaining.take(valid_size)
test = remaining.skip(valid_size)
for i in train:
print(i)
for i in valid:
print(i)
for i in test:
print(i)
Now Tensorflow doesn't contain any tools for that.
You could use sklearn.model_selection.train_test_split to generate train/eval/test dataset, then create tf.data.Dataset respectively.
You can use shard:
dataset = dataset.shuffle() # optional
trainset = dataset.shard(2, 0)
testset = dataset.shard(2, 1)
See:
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shard
The upcoming TensorFlow 2.10.0 will have a tf.keras.utils.split_dataset function, see the rc3 release notes:
Added tf.keras.utils.split_dataset utility to split a Dataset object or a list/tuple of arrays into two Dataset objects (e.g. train/test).
In case size of the dataset is known:
from typing import Tuple
import tensorflow as tf
def split_dataset(dataset: tf.data.Dataset,
dataset_size: int,
train_ratio: float,
validation_ratio: float) -> Tuple[tf.data.Dataset, tf.data.Dataset, tf.data.Dataset]:
assert (train_ratio + validation_ratio) < 1
train_count = int(dataset_size * train_ratio)
validation_count = int(dataset_size * validation_ratio)
test_count = dataset_size - (train_count + validation_count)
dataset = dataset.shuffle(dataset_size)
train_dataset = dataset.take(train_count)
validation_dataset = dataset.skip(train_count).take(validation_count)
test_dataset = dataset.skip(validation_count + train_count).take(test_count)
return train_dataset, validation_dataset, test_dataset
Example:
size_of_ds = 1001
train_ratio = 0.6
val_ratio = 0.2
ds = tf.data.Dataset.from_tensor_slices(list(range(size_of_ds)))
train_ds, val_ds, test_ds = split_dataset(ds, size_of_ds, train_ratio, val_ratio)
A robust way to split dataset into two parts is to first deterministically map every item in the dataset into a bucket with, for example, tf.strings.to_hash_bucket_fast. Then you can split the dataset into two by filtering by the bucket. If you split your data into five buckets, you get 80-20 split assuming that the split is even.
As an example, assume that your dataset contains dictionaries with key filename. We split the data into five buckets based on this key. With this add_fold function, we add the key "fold" in the dictionaries:
def add_fold(buckets: int):
def add_(sample, label):
fold = tf.strings.to_hash_bucket(sample["filename"], num_buckets=buckets)
return {**sample, "fold": fold}, label
return add_
dataset = dataset.map(add_fold(buckets=5))
Now we can split the dataset into two disjoint datasets with Dataset.filter:
def pick_fold(fold: int):
def filter_fn(sample, _):
return tf.math.equal(sample["fold"], fold)
return filter_fn
def skip_fold(fold: int):
def filter_fn(sample, _):
return tf.math.not_equal(sample["fold"], fold)
return filter_fn
train_dataset = dataset.filter(skip_fold(0))
val_dataset = dataset.filter(pick_fold(0))
The key that you use for hashing should be one that captures the correlations in the dataset. For example, if your samples collected by the same person are correlated and you want all samples with the same collector end up in the same bucket (and the same split), you should use the collector name or ID as the hashing column.
Of course, you can skip the part with dataset.map and do the hashing and filtering in one filter function. Here's a full example:
dataset = tf.data.Dataset.from_tensor_slices([f"value-{i}" for i in range(10000)])
def to_bucket(sample):
return tf.strings.to_hash_bucket_fast(sample, 5)
def filter_train_fn(sample):
return tf.math.not_equal(to_bucket(sample), 0)
def filter_val_fn(sample):
return tf.math.logical_not(filter_train_fn(sample))
train_ds = dataset.filter(filter_train_fn)
val_ds = dataset.filter(filter_val_fn)
print(f"Length of training set: {len(list(train_ds.as_numpy_iterator()))}")
print(f"Length of validation set: {len(list(val_ds.as_numpy_iterator()))}")
This prints:
Length of training set: 7995
Length of validation set: 2005
Can't comment, but above answer has overlap and is incorrect. Set BUFFER_SIZE to DATASET_SIZE for perfect shuffle. Try different sized val/test size to verify. Answer should be:
DATASET_SIZE = tf.data.experimental.cardinality(full_dataset).numpy()
train_size = int(0.7 * DATASET_SIZE)
val_size = int(0.15 * DATASET_SIZE)
test_size = int(0.15 * DATASET_SIZE)
full_dataset = full_dataset.shuffle(BUFFER_SIZE)
train_dataset = full_dataset.take(train_size)
test_dataset = full_dataset.skip(train_size)
val_dataset = test_dataset.take(val_size)
test_dataset = test_dataset.skip(val_size)

Implementing attention with beam search in tensorflow

I have written my own code with reference to this wonderful tutorial and I am not able to get results when using attention with beam search as per my understanding in the class AttentionModel the _build_decoder_cell function creates separate decoder cell and attention wrapper for inference mode , assuming this ( which i think is incorrect and cant find a way around it ) ,
with tf.name_scope("Decoder"):
mem_units = 2*dim
dec_cell = tf.contrib.rnn.BasicLSTMCell( 2*dim )
beam_cel = tf.contrib.rnn.BasicLSTMCell( 2*dim )
beam_width = 3
out_layer = Dense( output_vocab_size )
with tf.name_scope("Training"):
attn_mech = tf.contrib.seq2seq.BahdanauAttention( num_units = mem_units, memory = enc_rnn_out, normalize=True)
attn_cell = tf.contrib.seq2seq.AttentionWrapper( cell = dec_cell,attention_mechanism = attn_mech )
batch_size = tf.shape(enc_rnn_out)[0]
initial_state = attn_cell.zero_state( batch_size = batch_size , dtype=tf.float32 )
initial_state = initial_state.clone(cell_state = enc_rnn_state)
helper = tf.contrib.seq2seq.TrainingHelper( inputs = emb_x_y , sequence_length = seq_len )
decoder = tf.contrib.seq2seq.BasicDecoder( cell = attn_cell, helper = helper, initial_state = initial_state ,output_layer=out_layer )
outputs, final_state, final_sequence_lengths= tf.contrib.seq2seq.dynamic_decode(decoder=decoder,impute_finished=True)
training_logits = tf.identity(outputs.rnn_output )
training_pred = tf.identity(outputs.sample_id )
with tf.name_scope("Inference"):
enc_rnn_out_beam = tf.contrib.seq2seq.tile_batch( enc_rnn_out , beam_width )
seq_len_beam = tf.contrib.seq2seq.tile_batch( seq_len , beam_width )
enc_rnn_state_beam = tf.contrib.seq2seq.tile_batch( enc_rnn_state , beam_width )
batch_size_beam = tf.shape(enc_rnn_out_beam)[0] # now batch size is beam_width times
# start tokens mean be the original batch size so divide
start_tokens = tf.tile(tf.constant([27], dtype=tf.int32), [ batch_size_beam//beam_width ] )
end_token = 0
attn_mech_beam = tf.contrib.seq2seq.BahdanauAttention( num_units = mem_units, memory = enc_rnn_out_beam, normalize=True)
cell_beam = tf.contrib.seq2seq.AttentionWrapper(cell=beam_cel,attention_mechanism=attn_mech_beam,attention_layer_size=mem_units)
initial_state_beam = cell_beam.zero_state(batch_size=batch_size_beam,dtype=tf.float32).clone(cell_state=enc_rnn_state_beam)
my_decoder = tf.contrib.seq2seq.BeamSearchDecoder( cell = cell_beam,
embedding = emb_out,
start_tokens = start_tokens,
end_token = end_token,
initial_state = initial_state_beam,
beam_width = beam_width
,output_layer=out_layer)
beam_output, t1 , t2 = tf.contrib.seq2seq.dynamic_decode( my_decoder,
maximum_iterations=maxlen )
beam_logits = tf.no_op()
beam_sample_id = beam_output.predicted_ids
when i call beam _sample_id after training i am not getting correct result.
my guess is that we are supposed to using the same attention wrapper but that is not possible since we have to tile_sequence for beam search to be used.
Any insights / suggestion would be much appreciated.
i have also created an issue for this in their main repository Issue-93
I'm not sure what do you mean by "I am not able to get results" but I'm assuming that your model is not making use of the wieghts learnt while training .
if this is the case , then first of all you need to know that its all about variable sharing , the first thing you need to do is that you get rid of the different variable scopes between the training and inferring and instead you need to use some thing like
remove the
with tf.name_scope("Training"):
and use :
with tf.variable_scope("myScope"):
and then remove the
with tf.name_scope("Inference"):
and use instead
with tf.variable_scope("myScope" , reuse=True):
also at the beginning of your and after with tf.variable_scope("myScope" )
enc_rnn_out = tf.contrib.seq2seq.tile_batch( enc_rnn_out , 1 )
seq_len = tf.contrib.seq2seq.tile_batch( seq_len , 1 )
enc_rnn_state = tf.contrib.seq2seq.tile_batch( enc_rnn_state , 1 )
this will insure that your inference variables and training variables have the same signature and are shared ,
I have tested this when I was following the same tutorial that you have mentioned , my model is still training as I'm writing this post but I can see that the accuracy increasing as we speak , which indicates that the solution should work for you as well .
thank you
You can use tf.cond() to create different pathes between training and inference stage:
def get_tile_batch(enc_output, source_sequence_length, enc_state, useBeamSearch):
enc_output = tf.contrib.seq2seq.tile_batch(enc_output, multiplier=useBeamSearch)
source_sequence_length = tf.contrib.seq2seq.tile_batch(source_sequence_length, multiplier=useBeamSearch)
enc_state = tf.contrib.seq2seq.tile_batch(enc_state, multiplier=useBeamSearch)
return enc_output, source_sequence_length, enc_state
## for beam search: at training stage, use tile_batch multiplier = 1,
## at infer stage, use tile_batch multiplier = useBeamSearch
## tile_batch is just duplicate every sample in a batch,
## so it'll change batch_size to batch_size * useBeamSearch at runtime once batch_size was determined
enc_output, source_sequence_length, enc_state = tf.cond(
self.on_infer, # is inference stage?
lambda: get_tile_batch(enc_output, source_sequence_length, enc_state, useBeamSearch=useBeamSearch),
lambda: get_tile_batch(enc_output, source_sequence_length, enc_state, useBeamSearch=1)
)
# attention mechanism
attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(num_units=rnn_size, memory=enc_output, memory_sequence_length=source_sequence_length)
dec_cell = tf.contrib.seq2seq.AttentionWrapper(dec_cell, attention_mechanism)
## for beam search: change batch_size to batch_size * useBeamSearch at infer stage
decoder_initial_state = tf.cond(
self.on_infer, # is inference stage?
lambda: dec_cell.zero_state(batch_size=batch_size * useBeamSearch, dtype=tf.float32),
lambda: dec_cell.zero_state(batch_size=batch_size * 1, dtype=tf.float32)
)
enc_state = decoder_initial_state.clone(cell_state=enc_state)