Stable sampling of large Gaussian distributions - numpy

I'm trying to sample a Gaussian distribution of covariance matrix P that is N by N, with N very large (around 4000 ).
Usually one would proceed like so:
Compute the Cholesky decomposition of P : L, such that L * L.T = P
Sample a normal Gaussian distribution : X ~N(0,I_N), where I_N is the identity and N = 4000
Obtain the desired sample Y from Y = L * X
The snag here is in the computation of L. The algorithm does not seem to be stable for such a large matrix, as the computed Cholesky decomposition does not satisfy L * L.T != P.
I've tried to normalize P before computing its Cholesky decomposition (dividing it by its largest value), to no avail. I'm using the C++ library Eigen, and I've noticed this problem with numpy as well.
Any advice?

Cholesky decomposition should be quite stable, if the input matrix is actually positive definite. It can have issues if the matrix is (near) semi- or in-definite.
In that case you can use the LDLT decomposition instead. For an input A it computes a permutation P, a unit-diagonal triangular L and a diagonal D, such that
A = P.T*L*D*L.T*P
Then instead of multiplying Y = L * X you need of course Y = sqrt(D) * L * X, where sqrt(D) is an element-wise sqrt (I don't know the python syntax for that).
Note that you can ignore the permutation, since permuting a vector of identically independent distributed random numbers, is still a vector of i.i.d. numbers.
If that still does not work, try using the SelfAdjointEigenSolver-decomposition.
This computes a diagonal matrix of Eigenvalues D and a unitarian matrix V of Eigenvectors, such that
A = V * D * V^{-1}
And you can do essentially the same as above. (Note that for unitarian matrices, V^{-1} is just the adjoint of V, i.e., V^{-1} = V^T in the real-valued case).

Related

Python to fit a linear-plateau curve

I have curve that initially Y increases linearly with X, then reach a plateau at point C.
In other words, the curve can be defined as:
if X < C:
Y = k * X + b
else:
Y = k * C + b
The training data is a list of X ~ Y values. I need to determine k, b and C through a machine learning approach (or similar), since the data is noisy and refection point C changes over time. I want something more robust than get C through observing the current sample data.
How can I do it using sklearn or maybe scipy?
WLOG you can say the second equation is
Y = C
looks like you have a linear regression to fit the line and then a detection point to find the constant.
You know that in the high values of X, as in X > C you are already at the constant. So just check how far back down the values of X you get the same constant.
Then do a linear regression to find the line with value of X, X <= C
Your model is nonlinear
I think the smartest way to solve this is to do these steps:
find the maximum value of Y which is equal to k*C+b
M=max(Y)
drop this maximum value from your dataset
df1 = df[df.Y != M]
and then you have simple dataset to fit your X to Y and you can use sklearn for that

Posing a quadrating optimization problem for CVXOPT correctly

I am trying to minimize the function || Cx - d ||_2^2 with constraints Ax <= b. Some information about their sizes is as such:
* C is a (138, 22) matrix
* d is a (138,) vector
* A is a (138, 22) matrix
* b is a (138, ) vector of zeros
So I have 138 equation and 22 free variables that I'd like to optimize. I am currently coding this in Python and am using the transpose C.T*C to form a square matrix. The entire code looks like this
C = matrix(np.matmul(w, b).astype('double'))
b = matrix(np.matmul(w, np.log(dwi)).astype('double').reshape(-1))
P = C.T * C
q = -C.T * b
G = matrix(-constraints)
h = matrix(np.zeros(G.size[0]))
dt = np.array(solvers.qp(P, q, G, h, dims)['x']).reshape(-1)
where np.matmul(w, b) is C and np.matmul(w, np.log(dwi)) is d. Variables P and q are C and b multiplied by the transpose C.T to form a square multiplier matrix and constant vector, respectively. This works perfectly and I can find a solution.
I'd like to know whether this my approach makes mathematical sense. From my limited knowledge of linear algebra I know that a square matrix produces a unique solution, but is there is a way to run the same this to produce an overdetermined solution? I tried this but solver.qp said input Q needs to be a square matrix.
We can also parse in a dims argument to solver.qp, which I tried, but received the error:
use of function valued P, G, A requires a user-provided kktsolver.
How do I correctly setup dims?
Thanks a lot for any help. I'll try to clarify any questions as best as I can.

Fast algorithm for computing cofactor matrix

I wonder if there is a fast algorithm, say (O(n^3)) for computing the cofactor matrix (or conjugate matrix) of a N*N square matrix. And yes one could first compute its determinant and inverse separately and then multiply them together. But how about this square matrix is non-invertible?
I am curious about the accepted answer here:Speed up python code for computing matrix cofactors
What would it mean by "This probably means that also for non-invertible matrixes, there is some clever way to calculate the cofactor (i.e., not use the mathematical formula that you use above, but some other equivalent definition)."?
Factorize M = L x D x U, whereL is lower triangular with ones on the main diagonal,U is upper triangular on the main diagonal, andD is diagonal.
You can use back-substitution as with Cholesky factorization, which is similar. Then,
M^{ -1 } = U^{ -1 } x D^{ -1 } x L^{ -1 }
and then transpose the cofactor matrix as :
Cof( M )^T = Det( U ) x Det( D ) x Det( L ) x M^{ -1 }.
If M is singular or nearly so, one element (or more) of D will be zero or nearly zero. Replace those elements with zero in the matrix product and 1 in the determinant, and use the above equation for the transpose cofactor matrix.

How to find time-varying coefficients for a VAR model by using the Kalman Filter

I'm trying to write some code in R to reproduce the model i found in this article.
The idea is to model the signal as a VAR model, but fit the coefficients by a Kalman-filter model. This would essentially enable me to create a robust time-varying VAR(p) model and analyze non-stationary data to a degree.
The model to track the coefficients is:
X(t) = F(t) X(t− 1) +W(t)
Y(t) = H(t) X(t) + E(t),
where H(t) is the Kronecker product between lagged measurements in my time-series Y and a unit vector, and X(t) fills the role of regression-coefficients. F(t) is taken to be an identity matrix, as that should mean we assume coefficients to evolve as a random walk.
In the article, from W(T), the state noise covariance matrix Q(t) is chosen at 10^-3 at first and then fitted based on some iteration scheme. From E(t) the state noise covariance matrix is R(t) substituted by the covariance of the noise term unexplained by the model: Y(t) - H(t)Xhat(t)
I have the a priori covariance matrix of estimation error (denoted Σ in the article) written as P (based on other sources) and the a posteriori as Pmin, since it will be used in the next recursion as a priori, if that makes sense.
So far i've written the following, based on the articles Appendix A 1.2
Y <- *my timeseries, for test purposes two channels of 3000 points*
F <- diag(8) # F is (m^2*p by m^2 *p) where m=2 dimensions and p =2 lags
H <- diag(2) %x% t(vec(Y[,1:2])) #the Kronecker product of vectorized lags Y-1 and Y-2
Xhatminus <- matrix(1,8,1) # an arbitrary *a priori* coefficient matrix
Q <- diag(8)%x%(10**-7) #just a number a really low number diagonal matrix, found it used in some examples
R<- 1 #Didnt know what else to put here just yet
Pmin = diag(8) #*a priori* error estimate, just some 1-s...
Now should start the reccursion. To test i just took the first 3000 points of one trial of my data.
Xhatstorage <- matrix(0,8,3000)
for(j in 3:3000){
H <- diag(2) %x% t(vec(Y[,(j-2):(j-1)]))
K <- (Pmin %*% t(H)) %*% solve((H%*%Pmin%*%t(H) + R)) ##Solve gives inverse matrix ()^-1
P <- Pmin - K%*% H %*% Pmin
Xhatplus <- F%*%( Xhatminus + K%*%(Y[,j]-H%*%Xhatminus) )
Pplus <- (F%*% P %*% F) + Q
Xhatminus <- Xhatplus
Xhatstorage[,j] <- Xhatplus
Pmin <- Pplus
}
I extracted Xhatplus values into a storage matrix and used them to write this primitive VAR model with them:
Yhat<-array(0,3000)
for(t in 3:3000){
Yhat[t]<- t(vec(Y[,(t-2)])) %*% Xhatstorage[c(1,3),t] + t(vec(Y[,(t-1)])) %*% Xhatstorage[c(2,4),t]
}
The looks like this .
The blue line is VAR with Kalman filter found coefficients, Black is original data..
I'm having issue understanding how i can better evaluate my coefficients? Why is it so off?
How should i better choose the first a priori and a posteriori estimates to start the recursion? Currently, adding more lags to the VAR is not the issue i'm sure, it's that i don't know how to choose the initial values for Pmin and Xhatmin. Most places i pieced this together from start from arbitrary 0 assumptions in toy models, but in this case, choosing any of the said matrixes as 0 will just collapse the entire algorithm.
Lastly, is this recursion even a correct implementation of Oya et al describe in the article? I know im still missing the R evaluation based on previously unexplained errors (V(t) in Appendix A 1.2), but in general?

Fast way to set diagonals of an (M x N x N) matrix? Einsum / n-dimensional fill_diagonal?

I'm trying to write fast, optimized code based on matrices, and have recently discovered einsum as a tool for achieving significant speed-up.
Is it possible to use this to set the diagonals of a multidimensional array efficiently, or can it only return data?
In my problem, I'm trying to set the diagonals for an array of square matrices (shape: M x N x N) by summing the columns in each square (N x N) matrix.
My current (slow, loop-based) solution is:
# Build dummy array
dimx = 2 # Dimension x (likely to be < 100)
dimy = 3 # Dimension y (likely to be between 2 and 10)
M = np.random.randint(low=1, high=9, size=[dimx, dimy, dimy])
# Blank the diagonals so we can see the intended effect
np.fill_diagonal(M[0], 0)
np.fill_diagonal(M[1], 0)
# Compute diagonals based on summing columns
diags = np.einsum('ijk->ik', M)
# Set the diagonal for each matrix
# THIS IS LOW. CAN IT BE IMPROVED?
for i in range(len(M)):
np.fill_diagonal(M[i], diags[i])
# Print result
M
Can this be improved at all please? It seems np.fill_diagonal doesn't accepted non-square matrices (hence forcing my loop based solution). Perhaps einsum can help here too?
One approach would be to reshape to 2D, set the columns at steps of ncols+1 with the diagonal values. Reshaping creates a view and as such allows us to directly access those diagonal positions. Thus, the implementation would be -
s0,s1,s2 = M.shape
M.reshape(s0,-1)[:,::s2+1] = diags
If you do np.source(np.fill_diagonal) you'll see that in the 2d case it uses a 'strided' approach
if a.ndim == 2:
step = a.shape[1] + 1
end = a.shape[1] * a.shape[1]
a.flat[:end:step] = val
#Divakar's solution applies this to your 3d case by 'flattening' on 2 dimensions.
You could sum the columns with M.sum(axis=1). Though I vaguely recall some timings that found that einsum was actually a bit faster. sum is a little more conventional.
Someone has has asked for an ability to expand dimensions in einsum, but I don't think that will happen.