Animate a point moving along path between two points - cartopy

I want to animate a point moving along a path from one location to another on the map.
For example, I drawn a path from New York to New Delhi, using Geodetic transform. Eg. taken from docs Adding data to the map
plt.plot([ny_lon, delhi_lon], [ny_lat, delhi_lat],
color='blue', linewidth=2, marker='o',
transform=ccrs.Geodetic(),
)
Now i want to move a point along this path.
My idea was to somehow get some (say 50) points, along the path and plot a marker on each point for each frame. But I am not able to find a way to get the points on the path.
I found a function transform_points under classCRS, but I am unable to use this, as this gives me the same number of points i have, not the points in between.
Thanks in advance!

There are a couple of approaches to this.
The matplotlib approach
I'll start with perhaps the most basic if you are familiar with matplotlib, but this approach suffers from indirectly using cartopy's functionality, and is therefore harder to configure/extend.
There is a private _get_transformed_path method on a Line2D object (the thing that is returned from plt.plot). The resulting TransformedPath object has a get_transformed_path_and_affine method, which basically will give us the projected line (in the coordinate system of the Axes being drawn).
In [1]: import cartopy.crs as ccrs
In [3]: import matplotlib.pyplot as plt
In [4]: ax = plt.axes(projection=ccrs.Robinson())
In [6]: ny_lon, ny_lat = -75, 43
In [7]: delhi_lon, delhi_lat = 77.23, 28.61
In [8]: [line] = plt.plot([ny_lon, delhi_lon], [ny_lat, delhi_lat],
...: color='blue', linewidth=2, marker='o',
...: transform=ccrs.Geodetic(),
...: )
In [9]: t_path = line._get_transformed_path()
In [10]: path_in_data_coords, _ = t_path.get_transformed_path_and_affine()
In [11]: path_in_data_coords.vertices
Out[11]:
array([[-6425061.82215208, 4594257.92617961],
[-5808923.84969279, 5250795.00604155],
[-5206753.88613758, 5777772.51828996],
[-4554622.94040482, 6244967.03723341],
[-3887558.58343227, 6627927.97123701],
[-3200922.19194864, 6932398.19937816],
[-2480001.76507805, 7165675.95095855],
[-1702269.5101901 , 7332885.72276795],
[ -859899.12295981, 7431215.78426759],
[ 23837.23431173, 7453455.61302756],
[ 889905.10635756, 7397128.77301289],
[ 1695586.66856764, 7268519.87627204],
[ 2434052.81300274, 7073912.54130764],
[ 3122221.22299409, 6812894.40443648],
[ 3782033.80448001, 6478364.28561403],
[ 4425266.18173684, 6062312.15662039],
[ 5049148.25986903, 5563097.6328901 ],
[ 5616318.74912886, 5008293.21452795],
[ 6213232.98764984, 4307186.23400115],
[ 6720608.93929235, 3584542.06839575],
[ 7034261.06659143, 3059873.62740856]])
We can pull this together with matplotlib's animation functionality to do as requested:
import cartopy.crs as ccrs
import matplotlib.animation as animation
import matplotlib.pyplot as plt
ax = plt.axes(projection=ccrs.Robinson())
ax.stock_img()
ny_lon, ny_lat = -75, 43
delhi_lon, delhi_lat = 77.23, 28.61
[line] = plt.plot([ny_lon, delhi_lon], [ny_lat, delhi_lat],
color='blue', linewidth=2, marker='o',
transform=ccrs.Geodetic(),
)
t_path = line._get_transformed_path()
path_in_data_coords, _ = t_path.get_transformed_path_and_affine()
# Draw the point that we want to animate.
[point] = plt.plot(ny_lon, ny_lat, marker='o', transform=ax.projection)
def animate_point(i):
verts = path_in_data_coords.vertices
i = i % verts.shape[0]
# Set the coordinates of the line to the coordinate of the path.
point.set_data(verts[i, 0], verts[i, 1])
ani = animation.FuncAnimation(
ax.figure, animate_point,
frames= path_in_data_coords.vertices.shape[0],
interval=125, repeat=True)
ani.save('point_ani.gif', writer='imagemagick')
plt.show()
The cartopy approach
Under the hood, cartopy's matplotlib implementation (as used above), is calling the project_geometry method. We may as well make use of this directly as it is often more convenient to be using Shapely geometries than it is matplotlib Paths.
With this approach, we simply define a shapely geometry, and then construct the source and target coordinate reference systems that we want to convert the geometry from/to:
target_cs.project_geometry(geometry, source_cs)
The only thing we have to watch out for is that the result can be a MultiLineString (or more generally, any Multi- geometry type). However, in our simple case, we don't need to deal with that (incidentally, the same was true of the simple Path returned in the first example).
The code to produce a similar plot to above:
import cartopy.crs as ccrs
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
import shapely.geometry as sgeom
ax = plt.axes(projection=ccrs.Robinson())
ax.stock_img()
ny_lon, ny_lat = -75, 43
delhi_lon, delhi_lat = 77.23, 28.61
line = sgeom.LineString([[ny_lon, ny_lat], [delhi_lon, delhi_lat]])
projected_line = ccrs.PlateCarree().project_geometry(line, ccrs.Geodetic())
# We only animate along one of the projected lines.
if isinstance(projected_line, sgeom.MultiLineString):
projected_line = projected_line.geoms[0]
ax.add_geometries(
[projected_line], ccrs.PlateCarree(),
edgecolor='blue', facecolor='none')
[point] = plt.plot(ny_lon, ny_lat, marker='o', transform=ccrs.PlateCarree())
def animate_point(i):
verts = np.array(projected_line.coords)
i = i % verts.shape[0]
# Set the coordinates of the line to the coordinate of the path.
point.set_data(verts[i, 0], verts[i, 1])
ani = animation.FuncAnimation(
ax.figure, animate_point,
frames=len(projected_line.coords),
interval=125, repeat=True)
ani.save('projected_line_ani.gif', writer='imagemagick')
plt.show()
Final remaaaaarrrrrrks....
The approach naturally generalises to animating any type of matplotlib Arrrrtist.... in this case, I took a bit more control over the great circle resolution, and I animated an image along the great circle:
import cartopy.crs as ccrs
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
import shapely.geometry as sgeom
ax = plt.axes(projection=ccrs.Mercator())
ax.stock_img()
line = sgeom.LineString([[-5.9845, 37.3891], [-82.3666, 23.1136]])
# Higher resolution version of Mercator. Same workaround as found in
# https://github.com/SciTools/cartopy/issues/8#issuecomment-326987465.
class HighRes(ax.projection.__class__):
#property
def threshold(self):
return super(HighRes, self).threshold / 100
projected_line = HighRes().project_geometry(line, ccrs.Geodetic())
# We only animate along one of the projected lines.
if isinstance(projected_line, sgeom.MultiLineString):
projected_line = projected_line.geoms[0]
# Add the projected line to the map.
ax.add_geometries(
[projected_line], ax.projection,
edgecolor='blue', facecolor='none')
def ll_to_extent(x, y, ax_size=(4000000, 4000000)):
"""
Return an image extent in centered on the given
point with the given width and height.
"""
return [x - ax_size[0] / 2, x + ax_size[0] / 2,
y - ax_size[1] / 2, y + ax_size[1] / 2]
# Image from https://pixabay.com/en/sailing-ship-boat-sail-pirate-28930/.
pirate = plt.imread('pirates.png')
img = ax.imshow(pirate, extent=ll_to_extent(0, 0), transform=ax.projection, origin='upper')
ax.set_global()
def animate_ship(i):
verts = np.array(projected_line.coords)
i = i % verts.shape[0]
# Set the extent of the image to the coordinate of the path.
img.set_extent(ll_to_extent(verts[i, 0], verts[i, 1]))
ani = animation.FuncAnimation(
ax.figure, animate_ship,
frames=len(projected_line.coords),
interval=125, repeat=False)
ani.save('arrrr.gif', writer='imagemagick')
plt.show()
All code and images for this answer can be found at https://gist.github.com/pelson/618a5f4ca003e56f06d43815b21848f6.

Related

How to apply Earth Features and Land/Ocean masks in high resolution coastlines in Cartopy?

I am using the coastlines of the GSHHS dataset in Cartopy. This has a high resolution for coastlines. But I want to not only plot the high resolution coastline but also apply a mask for the ocean.
import matplotlib.pyplot as plt
import cartopy
fig = plt.figure(figsize=(20,12))
ax = plt.axes(projection=cartopy.crs.PlateCarree())
coast = cartopy.feature.GSHHSFeature(scale="full")
ax.add_feature(coast, linewidth=2)
ax.add_feature(cartopy.feature.NaturalEarthFeature("physical", "land", "10m"))
ax.set_extent([-17, -16, 27.9, 28.7])
Executing the code there're differences in the images, since I guess that ax.add_feature(cartopy.feature.NaturalEarthFeature("physical", "land", "10m")) is using the "10m" resolution, while GSHHS has a higher resolution.
How can I mask using GSHHS higher resolution? Thx.
Before one can answer the question how to apply a mask to hide features in the main plot, we need to investigate the available masks first.
In our case, the main plot is Natural_Earth 10m resolution Physical Land features, and various resolutions of GSHHSFeature as the available masks.
The code and the output plot below reveals the insight.
# Code adapted from:-
# Src: https://ctroupin.github.io/posts/2019-09-02-fine-coast/
import matplotlib.pyplot as plt
import cartopy
import cartopy.crs as ccrs
import cartopy.feature as cfeature
resolutions = {"c": "crude",
"l": "low",
"i": "intermediate",
"h": "high",
"f": "full"}
coordinates = (8.7, 8.81, 42.55, 42.60)
myproj = ccrs.PlateCarree()
fig = plt.figure(figsize=(8, 4))
for i, res in enumerate(resolutions):
ax = plt.subplot(2, 3, i+1, projection=myproj)
coast = cfeature.GSHHSFeature(scale=res)
ax.add_feature(coast, facecolor="lightgray")
ax.add_feature(cartopy.feature.NaturalEarthFeature("physical", "land", "10m"),
ec="red", fc="yellow", lw=2, alpha=0.4)
ax.set_xlim(coordinates[0], coordinates[1])
ax.set_ylim(coordinates[2], coordinates[3])
plt.title(resolutions[res])
plt.suptitle("GSHHS: gray Versus 10m_Physical_Land: yellow/red")
plt.show()
Suppose we need a plot at this zoom level. It is clearly that the outlines from 2 data sources do not fit well enough to the eyes of the viewers. We may conclude that none of the available masks is fit for the target plot.
But if the plot extents is wider, or smaller scale plots, coupled with some cartographic techniques, e.g. using thicker coastlines, one may get acceptable plots. The process is trial-and-error approach.
Edit1
With (Global_land_mask) added, more choices can be plotted for
comparison.
from global_land_mask import globe
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import numpy as np
# Extent of map in degrees
minlon,maxlon,minlat,maxlat = (8.7, 8.81, 42.55, 42.60)
# Lat/lon points to get for `global_land_mask` uses
# Finer than 500x250 has no improvement
lons = np.linspace(minlon,maxlon, 500)
lats = np.linspace(minlat,maxlat, 250)
# Make a grid
lon_grid, lat_grid = np.meshgrid(lons,lats)
# Get whether the points are on land.
z = globe.is_land(lat_grid, lon_grid)
# GSHHS ...
resolutions = {"c": "crude",
"l": "low",
"i": "intermediate",
"h": "high",
"f": "full"}
myproj = ccrs.PlateCarree()
fig = plt.figure(figsize=(8, 4))
for i, res in enumerate(resolutions):
ax = plt.subplot(2, 3, i+1, projection=myproj)
# GSHHSFeature
coast = cfeature.GSHHSFeature(scale=res)
ax.add_feature(coast, facecolor="brown", alpha=0.5)
# 10m physical_land
ax.add_feature(cfeature.NaturalEarthFeature("physical", "land", "10m"),
ec="red", fc="yellow", lw=2, alpha=0.4)
# Global_land_mask data is used to create fillcontour
# The fillcontour with proper (colormap, zorder, alpha) can be used as land `mask`
ax.contourf(lon_grid, lat_grid, z, cmap="Greys_r", alpha=0.4)
ax.set_xlim(minlon, maxlon)
ax.set_ylim(minlat, maxlat)
plt.title(resolutions[res])
plt.suptitle("GSHHS:brown/black | 10m_Land:yellow/red | Global_land_mask:light_gray")
plt.show()
# The best resolutuion from `Global_land_mask` is plotted in `lightgray` covering the sea areas

How to plot a filled polygon on a map in cartopy

Edited, adding suggestion from an answer
I have a list of vertices in lat/lon that define corners of a polygon on a map. I would like to draw that polygon on a map using cartopy, where the edges are great circles. I've tried following the examples at https://scitools.org.uk/cartopy/docs/v0.5/matplotlib/introductory_examples/02.polygon.html, but I can't get it to work. Here's what I have tried so far:
import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import matplotlib.patches as mpatches
map_proj = ccrs.Orthographic(central_latitude=0.0, central_longitude=80.0)
ax = plt.axes(projection=map_proj)
ax.set_global() # added following an answer to my question
ax.gridlines()
ax.coastlines(linewidth=0.5, color='k', resolution='50m')
lat_corners = np.array([-20., 0., 50., 30.])
lon_corners = np.array([ 20., 90., 90., 30.]) + 15.0 # offset from gridline for clarity
poly_corners = np.zeros((len(lat_corners), 2), np.float64)
poly_corners[:,0] = lon_corners
poly_corners[:,1] = lat_corners
poly = mpatches.Polygon(poly_corners, closed=True, ec='r', fill=False, lw=1, fc=None, transform=ccrs.Geodetic())
ax.add_patch(poly)
Notice that the lines are not great circles, and there seem to be more than four vertices. I feel like this is such a simple thing to do there must be a way, but I can't figure that out from the cartopy documentation.
I think this is probably because Cartopy's default transform resolution is too low for this projection. You can work around this by forcing a higher resolution:
map_proj = ccrs.Orthographic(central_latitude=0.0, central_longitude=80.0)
map_proj._threshold /= 100.
...
This gives nice curved great circle arcs.
Mind, that the example uses
ax.set_global()
Here is a runnable code and output.
Credits go to: the asker, ImportanceOfBeingErnest, and ajdawson.
import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import matplotlib.patches as mpatches
map_proj = ccrs.Orthographic(central_latitude=0.0, central_longitude=80.0)
map_proj._threshold /= 100. # the default values is bad, users need to set them manually
ax = plt.axes(projection=map_proj)
ax.set_global() # added following an answer to my question
ax.gridlines()
ax.coastlines(linewidth=0.5, color='k', resolution='50m')
lat_corners = np.array([-20., 0., 50., 30.])
lon_corners = np.array([ 20., 90., 90., 30.]) + 15.0 # offset from gridline for clarity
poly_corners = np.zeros((len(lat_corners), 2), np.float64)
poly_corners[:,0] = lon_corners
poly_corners[:,1] = lat_corners
poly = mpatches.Polygon(poly_corners, closed=True, ec='r', fill=True, lw=1, fc="yellow", transform=ccrs.Geodetic())
ax.add_patch(poly)
plt.show()
Output:

How to have only 1 shared colorbar for multiple plots [duplicate]

I've spent entirely too long researching how to get two subplots to share the same y-axis with a single colorbar shared between the two in Matplotlib.
What was happening was that when I called the colorbar() function in either subplot1 or subplot2, it would autoscale the plot such that the colorbar plus the plot would fit inside the 'subplot' bounding box, causing the two side-by-side plots to be two very different sizes.
To get around this, I tried to create a third subplot which I then hacked to render no plot with just a colorbar present.
The only problem is, now the heights and widths of the two plots are uneven, and I can't figure out how to make it look okay.
Here is my code:
from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from matplotlib.ticker import NullFormatter
# SIS Functions
TE = 1 # Einstein radius
g1 = lambda x,y: (TE/2) * (y**2-x**2)/((x**2+y**2)**(3/2))
g2 = lambda x,y: -1*TE*x*y / ((x**2+y**2)**(3/2))
kappa = lambda x,y: TE / (2*np.sqrt(x**2+y**2))
coords = np.linspace(-2,2,400)
X,Y = np.meshgrid(coords,coords)
g1out = g1(X,Y)
g2out = g2(X,Y)
kappaout = kappa(X,Y)
for i in range(len(coords)):
for j in range(len(coords)):
if np.sqrt(coords[i]**2+coords[j]**2) <= TE:
g1out[i][j]=0
g2out[i][j]=0
fig = plt.figure()
fig.subplots_adjust(wspace=0,hspace=0)
# subplot number 1
ax1 = fig.add_subplot(1,2,1,aspect='equal',xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{1}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
plt.ylabel(r"y ($\theta_{E}$)",rotation='horizontal',fontsize="15")
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.imshow(g1out,extent=(-2,2,-2,2))
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
e1 = patches.Ellipse((0,0),2,2,color='white')
ax1.add_patch(e1)
# subplot number 2
ax2 = fig.add_subplot(1,2,2,sharey=ax1,xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{2}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
ax2.yaxis.set_major_formatter( NullFormatter() )
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
plt.imshow(g2out,extent=(-2,2,-2,2))
e2 = patches.Ellipse((0,0),2,2,color='white')
ax2.add_patch(e2)
# subplot for colorbar
ax3 = fig.add_subplot(1,1,1)
ax3.axis('off')
cbar = plt.colorbar(ax=ax2)
plt.show()
Just place the colorbar in its own axis and use subplots_adjust to make room for it.
As a quick example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
plt.show()
Note that the color range will be set by the last image plotted (that gave rise to im) even if the range of values is set by vmin and vmax. If another plot has, for example, a higher max value, points with higher values than the max of im will show in uniform color.
You can simplify Joe Kington's code using the axparameter of figure.colorbar() with a list of axes.
From the documentation:
ax
None | parent axes object(s) from which space for a new colorbar axes will be stolen. If a list of axes is given they will all be resized to make room for the colorbar axes.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
This solution does not require manual tweaking of axes locations or colorbar size, works with multi-row and single-row layouts, and works with tight_layout(). It is adapted from a gallery example, using ImageGrid from matplotlib's AxesGrid Toolbox.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
# Set up figure and image grid
fig = plt.figure(figsize=(9.75, 3))
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,3),
axes_pad=0.15,
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
# Add data to image grid
for ax in grid:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
# Colorbar
ax.cax.colorbar(im)
ax.cax.toggle_label(True)
#plt.tight_layout() # Works, but may still require rect paramater to keep colorbar labels visible
plt.show()
Using make_axes is even easier and gives a better result. It also provides possibilities to customise the positioning of the colorbar.
Also note the option of subplots to share x and y axes.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
cax,kw = mpl.colorbar.make_axes([ax for ax in axes.flat])
plt.colorbar(im, cax=cax, **kw)
plt.show()
As a beginner who stumbled across this thread, I'd like to add a python-for-dummies adaptation of abevieiramota's very neat answer (because I'm at the level that I had to look up 'ravel' to work out what their code was doing):
import numpy as np
import matplotlib.pyplot as plt
fig, ((ax1,ax2,ax3),(ax4,ax5,ax6)) = plt.subplots(2,3)
axlist = [ax1,ax2,ax3,ax4,ax5,ax6]
first = ax1.imshow(np.random.random((10,10)), vmin=0, vmax=1)
third = ax3.imshow(np.random.random((12,12)), vmin=0, vmax=1)
fig.colorbar(first, ax=axlist)
plt.show()
Much less pythonic, much easier for noobs like me to see what's actually happening here.
Shared colormap and colorbar
This is for the more complex case where the values are not just between 0 and 1; the cmap needs to be shared instead of just using the last one.
import numpy as np
from matplotlib.colors import Normalize
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig, axes = plt.subplots(nrows=2, ncols=2)
cmap=cm.get_cmap('viridis')
normalizer=Normalize(0,4)
im=cm.ScalarMappable(norm=normalizer)
for i,ax in enumerate(axes.flat):
ax.imshow(i+np.random.random((10,10)),cmap=cmap,norm=normalizer)
ax.set_title(str(i))
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
As pointed out in other answers, the idea is usually to define an axes for the colorbar to reside in. There are various ways of doing so; one that hasn't been mentionned yet would be to directly specify the colorbar axes at subplot creation with plt.subplots(). The advantage is that the axes position does not need to be manually set and in all cases with automatic aspect the colorbar will be exactly the same height as the subplots. Even in many cases where images are used the result will be satisfying as shown below.
When using plt.subplots(), the use of gridspec_kw argument allows to make the colorbar axes much smaller than the other axes.
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
Example:
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,8), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,8), vmin=0, vmax=1)
ax.set_ylabel("y label")
fig.colorbar(im, cax=cax)
plt.show()
This works well, if the plots' aspect is autoscaled or the images are shrunk due to their aspect in the width direction (as in the above). If, however, the images are wider then high, the result would look as follows, which might be undesired.
A solution to fix the colorbar height to the subplot height would be to use mpl_toolkits.axes_grid1.inset_locator.InsetPosition to set the colorbar axes relative to the image subplot axes.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
from mpl_toolkits.axes_grid1.inset_locator import InsetPosition
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(7,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,16), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,16), vmin=0, vmax=1)
ax.set_ylabel("y label")
ip = InsetPosition(ax2, [1.05,0,0.05,1])
cax.set_axes_locator(ip)
fig.colorbar(im, cax=cax, ax=[ax,ax2])
plt.show()
New in matplotlib 3.4.0
Shared colorbars can now be implemented using subfigures:
New Figure.subfigures and Figure.add_subfigure allow ... localized figure artists (e.g., colorbars and suptitles) that only pertain to each subfigure.
The matplotlib gallery includes demos on how to plot subfigures.
Here is a minimal example with 2 subfigures, each with a shared colorbar:
fig = plt.figure(constrained_layout=True)
(subfig_l, subfig_r) = fig.subfigures(nrows=1, ncols=2)
axes_l = subfig_l.subplots(nrows=1, ncols=2, sharey=True)
for ax in axes_l:
im = ax.imshow(np.random.random((10, 10)), vmin=0, vmax=1)
# shared colorbar for left subfigure
subfig_l.colorbar(im, ax=axes_l, location='bottom')
axes_r = subfig_r.subplots(nrows=3, ncols=1, sharex=True)
for ax in axes_r:
mesh = ax.pcolormesh(np.random.randn(30, 30), vmin=-2.5, vmax=2.5)
# shared colorbar for right subfigure
subfig_r.colorbar(mesh, ax=axes_r)
The solution of using a list of axes by abevieiramota works very well until you use only one row of images, as pointed out in the comments. Using a reasonable aspect ratio for figsize helps, but is still far from perfect. For example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(9.75, 3))
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
The colorbar function provides the shrink parameter which is a scaling factor for the size of the colorbar axes. It does require some manual trial and error. For example:
fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.75)
To add to #abevieiramota's excellent answer, you can get the euqivalent of tight_layout with constrained_layout. You will still get large horizontal gaps if you use imshow instead of pcolormesh because of the 1:1 aspect ratio imposed by imshow.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
for ax in axes.flat:
im = ax.pcolormesh(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.flat)
plt.show()
I noticed that almost every solution posted involved ax.imshow(im, ...) and did not normalize the colors displayed to the colorbar for the multiple subfigures. The im mappable is taken from the last instance, but what if the values of the multiple im-s are different? (I'm assuming these mappables are treated in the same way that the contour-sets and surface-sets are treated.) I have an example using a 3d surface plot below that creates two colorbars for a 2x2 subplot (one colorbar per one row). Although the question asks explicitly for a different arrangement, I think the example helps clarify some things. I haven't found a way to do this using plt.subplots(...) yet because of the 3D axes unfortunately.
If only I could position the colorbars in a better way... (There is probably a much better way to do this, but at least it should be not too difficult to follow.)
import matplotlib
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
cmap = 'plasma'
ncontours = 5
def get_data(row, col):
""" get X, Y, Z, and plot number of subplot
Z > 0 for top row, Z < 0 for bottom row """
if row == 0:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 1
else:
pnum = 2
elif row == 1:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = -np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 3
else:
pnum = 4
print("\nPNUM: {}, Zmin = {}, Zmax = {}\n".format(pnum, np.min(Z), np.max(Z)))
return X, Y, Z, pnum
fig = plt.figure()
nrows, ncols = 2, 2
zz = []
axes = []
for row in range(nrows):
for col in range(ncols):
X, Y, Z, pnum = get_data(row, col)
ax = fig.add_subplot(nrows, ncols, pnum, projection='3d')
ax.set_title('row = {}, col = {}'.format(row, col))
fhandle = ax.plot_surface(X, Y, Z, cmap=cmap)
zz.append(Z)
axes.append(ax)
## get full range of Z data as flat list for top and bottom rows
zz_top = zz[0].reshape(-1).tolist() + zz[1].reshape(-1).tolist()
zz_btm = zz[2].reshape(-1).tolist() + zz[3].reshape(-1).tolist()
## get top and bottom axes
ax_top = [axes[0], axes[1]]
ax_btm = [axes[2], axes[3]]
## normalize colors to minimum and maximum values of dataset
norm_top = matplotlib.colors.Normalize(vmin=min(zz_top), vmax=max(zz_top))
norm_btm = matplotlib.colors.Normalize(vmin=min(zz_btm), vmax=max(zz_btm))
cmap = cm.get_cmap(cmap, ncontours) # number of colors on colorbar
mtop = cm.ScalarMappable(cmap=cmap, norm=norm_top)
mbtm = cm.ScalarMappable(cmap=cmap, norm=norm_btm)
for m in (mtop, mbtm):
m.set_array([])
# ## create cax to draw colorbar in
# cax_top = fig.add_axes([0.9, 0.55, 0.05, 0.4])
# cax_btm = fig.add_axes([0.9, 0.05, 0.05, 0.4])
cbar_top = fig.colorbar(mtop, ax=ax_top, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_top)
cbar_top.set_ticks(np.linspace(min(zz_top), max(zz_top), ncontours))
cbar_btm = fig.colorbar(mbtm, ax=ax_btm, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_btm)
cbar_btm.set_ticks(np.linspace(min(zz_btm), max(zz_btm), ncontours))
plt.show()
plt.close(fig)
## orientation of colorbar = 'horizontal' if done by column
This topic is well covered but I still would like to propose another approach in a slightly different philosophy.
It is a bit more complex to set-up but it allow (in my opinion) a bit more flexibility. For example, one can play with the respective ratios of each subplots / colorbar:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.gridspec import GridSpec
# Define number of rows and columns you want in your figure
nrow = 2
ncol = 3
# Make a new figure
fig = plt.figure(constrained_layout=True)
# Design your figure properties
widths = [3,4,5,1]
gs = GridSpec(nrow, ncol + 1, figure=fig, width_ratios=widths)
# Fill your figure with desired plots
axes = []
for i in range(nrow):
for j in range(ncol):
axes.append(fig.add_subplot(gs[i, j]))
im = axes[-1].pcolormesh(np.random.random((10,10)))
# Shared colorbar
axes.append(fig.add_subplot(gs[:, ncol]))
fig.colorbar(im, cax=axes[-1])
plt.show()
The answers above are great, but most of them use the fig.colobar() method applied to a fig object. This example shows how to use the plt.colobar() function, applied directly to pyplot:
def shared_colorbar_example():
fig, axs = plt.subplots(nrows=3, ncols=3)
for ax in axs.flat:
plt.sca(ax)
color = np.random.random((10))
plt.scatter(range(10), range(10), c=color, cmap='viridis', vmin=0, vmax=1)
plt.colorbar(ax=axs.ravel().tolist(), shrink=0.6)
plt.show()
shared_colorbar_example()
Since most answers above demonstrated usage on 2D matrices, I went with a simple scatter plot. The shrink keyword is optional and resizes the colorbar.
If vmin and vmax are not specified this approach will automatically analyze all of the subplots for the minimum and maximum value to be used on the colorbar. The above approaches when using fig.colorbar(im) scan only the image passed as argument for min and max values of the colorbar.
Result:

Limit extent of orthograpic projection (zooming)

I would like to produce orthographic (polar) plots of Antarctica that are 'zoomed' with respect to the default settings. By default I get this:
Antarctica polar
The following script produced this.
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
ax = plt.axes(projection=ccrs.Orthographic(central_longitude=0.0, central_latitude=-90.))
ax.stock_img()
plt.show()
My best attempt to tell Cartopy 'limit the latitude to 60S to 90S' was:
ax.set_extent([-180,180,-60,-90], ccrs.PlateCarree())
unfortunately it does not give the desired result. Any ideas? Thanks in advance.
I'm not sure I fully understand what you're trying to do. Your example looks like a bounding box that was defined, but you'd like it rounded like your first example?
cartopy documentation has an example of this http://scitools.org.uk/cartopy/docs/latest/examples/always_circular_stereo.html:
import matplotlib.path as mpath
import matplotlib.pyplot as plt
import numpy as np
import cartopy.crs as ccrs
import cartopy.feature
def main():
fig = plt.figure(figsize=[10, 5])
ax1 = plt.subplot(1, 2, 1, projection=ccrs.SouthPolarStereo())
ax2 = plt.subplot(1, 2, 2, projection=ccrs.SouthPolarStereo(),
sharex=ax1, sharey=ax1)
fig.subplots_adjust(bottom=0.05, top=0.95,
left=0.04, right=0.95, wspace=0.02)
# Limit the map to -60 degrees latitude and below.
ax1.set_extent([-180, 180, -90, -60], ccrs.PlateCarree())
ax1.add_feature(cartopy.feature.LAND)
ax1.add_feature(cartopy.feature.OCEAN)
ax1.gridlines()
ax2.gridlines()
ax2.add_feature(cartopy.feature.LAND)
ax2.add_feature(cartopy.feature.OCEAN)
# Compute a circle in axes coordinates, which we can use as a boundary
# for the map. We can pan/zoom as much as we like - the boundary will be
# permanently circular.
theta = np.linspace(0, 2*np.pi, 100)
center, radius = [0.5, 0.5], 0.5
verts = np.vstack([np.sin(theta), np.cos(theta)]).T
circle = mpath.Path(verts * radius + center)
ax2.set_boundary(circle, transform=ax2.transAxes)
plt.show()
if __name__ == '__main__':
main()

matplotlib: Stretch image to cover the whole figure

I am quite used to working with matlab and now trying to make the shift matplotlib and numpy. Is there a way in matplotlib that an image you are plotting occupies the whole figure window.
import numpy as np
import matplotlib.pyplot as plt
# get image im as nparray
# ........
plt.figure()
plt.imshow(im)
plt.set_cmap('hot')
plt.savefig("frame.png")
I want the image to maintain its aspect ratio and scale to the size of the figure ... so when I do savefig it exactly the same size as the input figure, and it is completely covered by the image.
Thanks.
I did this using the following snippet.
#!/usr/bin/env python
import numpy as np
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from pylab import *
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = Z2-Z1 # difference of Gaussians
ax = Axes(plt.gcf(),[0,0,1,1],yticks=[],xticks=[],frame_on=False)
plt.gcf().delaxes(plt.gca())
plt.gcf().add_axes(ax)
im = plt.imshow(Z, cmap=cm.gray)
plt.show()
Note the grey border on the sides is related to the aspect rario of the Axes which is altered by setting aspect='equal', or aspect='auto' or your ratio.
Also as mentioned by Zhenya in the comments Similar StackOverflow Question
mentions the parameters to savefig of bbox_inches='tight' and pad_inches=-1 or pad_inches=0
You can use a function like the one below.
It calculates the needed size for the figure (in inches) according to the resolution in dpi you want.
import numpy as np
import matplotlib.pyplot as plt
def plot_im(image, dpi=80):
px,py = im.shape # depending of your matplotlib.rc you may
have to use py,px instead
#px,py = im[:,:,0].shape # if image has a (x,y,z) shape
size = (py/np.float(dpi), px/np.float(dpi)) # note the np.float()
fig = plt.figure(figsize=size, dpi=dpi)
ax = fig.add_axes([0, 0, 1, 1])
# Customize the axis
# remove top and right spines
ax.spines['right'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_color('none')
# turn off ticks
ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
ax.imshow(im)
plt.show()
Here's a minimal object-oriented solution:
fig = plt.figure(figsize=(8, 8))
ax = fig.add_axes([0, 0, 1, 1], frameon=False, xticks=[], yticks=[])
Testing it out with
ax.imshow([[0]])
fig.savefig('test.png')
saves out a uniform purple block.
edit: As #duhaime points out below, this requires the figure to have the same aspect as the axes.
If you'd like the axes to resize to the figure, add aspect='auto' to imshow.
If you'd like the figure to resize to be resized to the axes, add
from matplotlib import tight_bbox
bbox = fig.get_tightbbox(fig.canvas.get_renderer())
tight_bbox.adjust_bbox(fig, bbox, fig.canvas.fixed_dpi)
after the imshow call. This is the important bit of matplotlib's tight_layout functionality which is implicitly called by things like Jupyter's renderer.