How to fill histogram with color gradient where a fixed point represents the middle of of colormap - matplotlib

This code
import numpy as np
import matplotlib.pyplot as plt
def randn(n, sigma, mu):
return sigma * np.random.randn(n) + mu
x = randn(1000, 40., -100.)
cm = plt.cm.get_cmap("seismic")
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
_, bins, patches = ax.hist(x,color="r",bins=30)
bin_centers = 0.5*(bins[:-1]+bins[1:])
col = bin_centers - min(bin_centers)
col /= max(col)
for c, p in zip(col, patches):
plt.setp(p, "facecolor", cm(c))
plt.savefig("b.png", dpi=300, bbox_inches="tight")
produces the following histograms
I want to use the diverging colormap seismic and would like to have all bars representing the occurrence of negative numbers to be bluish and all bars representing positive numbers reddish. Around zero the bars should always be white. Therefore the first graph should be mostly reddish and the last one should be mostly bluish. How can I achieve that?

If this is about visual appearance only, you can normalize your colors to the range between the maximum absolute value and its negative counterpart, such that zero is always in the middle (max |bins|).
import numpy as np; np.random.seed(42)
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = 6.4,4
def randn(n, sigma, mu):
return sigma * np.random.randn(n) + mu
x1 = randn(999, 40., -80)
x2 = randn(750, 40., 80)
x3 = randn(888, 16., -30)
def hist(x, ax=None):
cm = plt.cm.get_cmap("seismic")
ax = ax or plt.gca()
_, bins, patches = ax.hist(x,color="r",bins=30)
bin_centers = 0.5*(bins[:-1]+bins[1:])
maxi = np.abs(bin_centers).max()
norm = plt.Normalize(-maxi,maxi)
for c, p in zip(bin_centers, patches):
plt.setp(p, "facecolor", cm(norm(c)))
fig, axes = plt.subplots(nrows=3, sharex=True)
for x, ax in zip([x1,x2,x3], axes):
hist(x,ax=ax)
plt.show()

I have an alternative answer for a different use case. I wanted to have the different colours from the divergent colormap be dynamically mapped to their respective "width" on either side of the divergence point. Additionally, I wanted to explicitly set the divergence point (in my case, 1).
I achieved this by modifying the answer from #ImportanceofBeingErnest, although in the end I didn't need to do any normalization, I just used two plots on the same figure, and chose the sequential colormaps which, when put end-to-end, re-formed the target divergent colormap.
def hist2(x, vmin, vmax, cmmap_name, ax=None,):
cm = plt.cm.get_cmap(cmmap_name)
ax = ax or plt.gca()
_, bins, patches = ax.hist(x,color="r",bins=50)
bin_centers = 0.5*(bins[:-1]+bins[1:])
norm = plt.Normalize(vmin, vmax)
for c, p in zip(bin_centers, patches):
plt.setp(p, "facecolor", cm(norm(c)))
data = <YOUR DATA>
left_data = [i for i in data if i < <YOUR DIVERGENCE POINT>]
right_data = [i for i in data if i >= <YOUR DIVERGENCE POINT>]
fig, ax = plt.subplots(nrows=1)
hist2(left_data, min(left_data), max(left_data), "YlOrRd_r", ax=ax)
hist2(right_data, min(right_data), max(right_data), "YlGn", ax=ax)
plt.show()
Some of my results:

Related

Surface Plot of a function B(x,y,z)

I have to plot a surface plot which has axes x,y,z and a colormap set by a function of x,y,z [B(x,y,z)].
I have the coordinate arrays:
x=np.arange(-100,100,1)
y=np.arange(-100,100,1)
z=np.arange(-100,100,1)
Moreover, my to-be-colormap function B(x,y,z) is a 3D array, whose B(x,y,z)[i] elements are the (x,y) coordinates at z.
I have tried something like:
Z,X,Y=np.meshgrid(z,x,y) # Z is the first one since B(x,y,z)[i] are the (x,y) coordinates at z.
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
img = ax.scatter(Z, X, Y, c=B(x,y,z), cmap=plt.hot())
fig.colorbar(img)
plt.show()
However, it unsurprisingly plots dots, which is not what I want. Rather, I need a surface plot.
The figure I have obtained:
The kind of figure I want:
where the colors are determined by B(x,y,z) for my case.
You have to:
use plot_surface to create a surface plot.
your function B(x, y, z) will be used to compute the color parameter, a number assigned to each face of the surface.
the color parameter must be normalized between 0, 1. We use matplotlib's Normalize to achieve that.
then, you create the colors by applying the colormap to the normalized color parameter.
finally, you create the plot.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import Normalize
t = np.linspace(0, 2*np.pi)
p = np.linspace(0, 2*np.pi)
t, p = np.meshgrid(t, p)
r1, r2 = 1, 3
x = (r2 + r1 * np.cos(t)) * np.cos(p)
y = (r2 + r1 * np.cos(t)) * np.sin(p)
z = r1 * np.sin(t)
color_param = np.sin(x / 2) * np.cos(y) + z
cmap = cm.jet
norm = Normalize(vmin=color_param.min(), vmax=color_param.max())
norm_color_param = norm(color_param)
colors = cmap(norm_color_param)
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.plot_surface(x, y, z, facecolors=colors)
ax.set_zlim(-4, 4)
plt.show()

How to have only 1 shared colorbar for multiple plots [duplicate]

I've spent entirely too long researching how to get two subplots to share the same y-axis with a single colorbar shared between the two in Matplotlib.
What was happening was that when I called the colorbar() function in either subplot1 or subplot2, it would autoscale the plot such that the colorbar plus the plot would fit inside the 'subplot' bounding box, causing the two side-by-side plots to be two very different sizes.
To get around this, I tried to create a third subplot which I then hacked to render no plot with just a colorbar present.
The only problem is, now the heights and widths of the two plots are uneven, and I can't figure out how to make it look okay.
Here is my code:
from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from matplotlib.ticker import NullFormatter
# SIS Functions
TE = 1 # Einstein radius
g1 = lambda x,y: (TE/2) * (y**2-x**2)/((x**2+y**2)**(3/2))
g2 = lambda x,y: -1*TE*x*y / ((x**2+y**2)**(3/2))
kappa = lambda x,y: TE / (2*np.sqrt(x**2+y**2))
coords = np.linspace(-2,2,400)
X,Y = np.meshgrid(coords,coords)
g1out = g1(X,Y)
g2out = g2(X,Y)
kappaout = kappa(X,Y)
for i in range(len(coords)):
for j in range(len(coords)):
if np.sqrt(coords[i]**2+coords[j]**2) <= TE:
g1out[i][j]=0
g2out[i][j]=0
fig = plt.figure()
fig.subplots_adjust(wspace=0,hspace=0)
# subplot number 1
ax1 = fig.add_subplot(1,2,1,aspect='equal',xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{1}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
plt.ylabel(r"y ($\theta_{E}$)",rotation='horizontal',fontsize="15")
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.imshow(g1out,extent=(-2,2,-2,2))
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
e1 = patches.Ellipse((0,0),2,2,color='white')
ax1.add_patch(e1)
# subplot number 2
ax2 = fig.add_subplot(1,2,2,sharey=ax1,xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{2}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
ax2.yaxis.set_major_formatter( NullFormatter() )
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
plt.imshow(g2out,extent=(-2,2,-2,2))
e2 = patches.Ellipse((0,0),2,2,color='white')
ax2.add_patch(e2)
# subplot for colorbar
ax3 = fig.add_subplot(1,1,1)
ax3.axis('off')
cbar = plt.colorbar(ax=ax2)
plt.show()
Just place the colorbar in its own axis and use subplots_adjust to make room for it.
As a quick example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
plt.show()
Note that the color range will be set by the last image plotted (that gave rise to im) even if the range of values is set by vmin and vmax. If another plot has, for example, a higher max value, points with higher values than the max of im will show in uniform color.
You can simplify Joe Kington's code using the axparameter of figure.colorbar() with a list of axes.
From the documentation:
ax
None | parent axes object(s) from which space for a new colorbar axes will be stolen. If a list of axes is given they will all be resized to make room for the colorbar axes.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
This solution does not require manual tweaking of axes locations or colorbar size, works with multi-row and single-row layouts, and works with tight_layout(). It is adapted from a gallery example, using ImageGrid from matplotlib's AxesGrid Toolbox.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
# Set up figure and image grid
fig = plt.figure(figsize=(9.75, 3))
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,3),
axes_pad=0.15,
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
# Add data to image grid
for ax in grid:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
# Colorbar
ax.cax.colorbar(im)
ax.cax.toggle_label(True)
#plt.tight_layout() # Works, but may still require rect paramater to keep colorbar labels visible
plt.show()
Using make_axes is even easier and gives a better result. It also provides possibilities to customise the positioning of the colorbar.
Also note the option of subplots to share x and y axes.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
cax,kw = mpl.colorbar.make_axes([ax for ax in axes.flat])
plt.colorbar(im, cax=cax, **kw)
plt.show()
As a beginner who stumbled across this thread, I'd like to add a python-for-dummies adaptation of abevieiramota's very neat answer (because I'm at the level that I had to look up 'ravel' to work out what their code was doing):
import numpy as np
import matplotlib.pyplot as plt
fig, ((ax1,ax2,ax3),(ax4,ax5,ax6)) = plt.subplots(2,3)
axlist = [ax1,ax2,ax3,ax4,ax5,ax6]
first = ax1.imshow(np.random.random((10,10)), vmin=0, vmax=1)
third = ax3.imshow(np.random.random((12,12)), vmin=0, vmax=1)
fig.colorbar(first, ax=axlist)
plt.show()
Much less pythonic, much easier for noobs like me to see what's actually happening here.
Shared colormap and colorbar
This is for the more complex case where the values are not just between 0 and 1; the cmap needs to be shared instead of just using the last one.
import numpy as np
from matplotlib.colors import Normalize
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig, axes = plt.subplots(nrows=2, ncols=2)
cmap=cm.get_cmap('viridis')
normalizer=Normalize(0,4)
im=cm.ScalarMappable(norm=normalizer)
for i,ax in enumerate(axes.flat):
ax.imshow(i+np.random.random((10,10)),cmap=cmap,norm=normalizer)
ax.set_title(str(i))
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
As pointed out in other answers, the idea is usually to define an axes for the colorbar to reside in. There are various ways of doing so; one that hasn't been mentionned yet would be to directly specify the colorbar axes at subplot creation with plt.subplots(). The advantage is that the axes position does not need to be manually set and in all cases with automatic aspect the colorbar will be exactly the same height as the subplots. Even in many cases where images are used the result will be satisfying as shown below.
When using plt.subplots(), the use of gridspec_kw argument allows to make the colorbar axes much smaller than the other axes.
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
Example:
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,8), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,8), vmin=0, vmax=1)
ax.set_ylabel("y label")
fig.colorbar(im, cax=cax)
plt.show()
This works well, if the plots' aspect is autoscaled or the images are shrunk due to their aspect in the width direction (as in the above). If, however, the images are wider then high, the result would look as follows, which might be undesired.
A solution to fix the colorbar height to the subplot height would be to use mpl_toolkits.axes_grid1.inset_locator.InsetPosition to set the colorbar axes relative to the image subplot axes.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
from mpl_toolkits.axes_grid1.inset_locator import InsetPosition
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(7,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,16), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,16), vmin=0, vmax=1)
ax.set_ylabel("y label")
ip = InsetPosition(ax2, [1.05,0,0.05,1])
cax.set_axes_locator(ip)
fig.colorbar(im, cax=cax, ax=[ax,ax2])
plt.show()
New in matplotlib 3.4.0
Shared colorbars can now be implemented using subfigures:
New Figure.subfigures and Figure.add_subfigure allow ... localized figure artists (e.g., colorbars and suptitles) that only pertain to each subfigure.
The matplotlib gallery includes demos on how to plot subfigures.
Here is a minimal example with 2 subfigures, each with a shared colorbar:
fig = plt.figure(constrained_layout=True)
(subfig_l, subfig_r) = fig.subfigures(nrows=1, ncols=2)
axes_l = subfig_l.subplots(nrows=1, ncols=2, sharey=True)
for ax in axes_l:
im = ax.imshow(np.random.random((10, 10)), vmin=0, vmax=1)
# shared colorbar for left subfigure
subfig_l.colorbar(im, ax=axes_l, location='bottom')
axes_r = subfig_r.subplots(nrows=3, ncols=1, sharex=True)
for ax in axes_r:
mesh = ax.pcolormesh(np.random.randn(30, 30), vmin=-2.5, vmax=2.5)
# shared colorbar for right subfigure
subfig_r.colorbar(mesh, ax=axes_r)
The solution of using a list of axes by abevieiramota works very well until you use only one row of images, as pointed out in the comments. Using a reasonable aspect ratio for figsize helps, but is still far from perfect. For example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(9.75, 3))
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
The colorbar function provides the shrink parameter which is a scaling factor for the size of the colorbar axes. It does require some manual trial and error. For example:
fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.75)
To add to #abevieiramota's excellent answer, you can get the euqivalent of tight_layout with constrained_layout. You will still get large horizontal gaps if you use imshow instead of pcolormesh because of the 1:1 aspect ratio imposed by imshow.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
for ax in axes.flat:
im = ax.pcolormesh(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.flat)
plt.show()
I noticed that almost every solution posted involved ax.imshow(im, ...) and did not normalize the colors displayed to the colorbar for the multiple subfigures. The im mappable is taken from the last instance, but what if the values of the multiple im-s are different? (I'm assuming these mappables are treated in the same way that the contour-sets and surface-sets are treated.) I have an example using a 3d surface plot below that creates two colorbars for a 2x2 subplot (one colorbar per one row). Although the question asks explicitly for a different arrangement, I think the example helps clarify some things. I haven't found a way to do this using plt.subplots(...) yet because of the 3D axes unfortunately.
If only I could position the colorbars in a better way... (There is probably a much better way to do this, but at least it should be not too difficult to follow.)
import matplotlib
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
cmap = 'plasma'
ncontours = 5
def get_data(row, col):
""" get X, Y, Z, and plot number of subplot
Z > 0 for top row, Z < 0 for bottom row """
if row == 0:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 1
else:
pnum = 2
elif row == 1:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = -np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 3
else:
pnum = 4
print("\nPNUM: {}, Zmin = {}, Zmax = {}\n".format(pnum, np.min(Z), np.max(Z)))
return X, Y, Z, pnum
fig = plt.figure()
nrows, ncols = 2, 2
zz = []
axes = []
for row in range(nrows):
for col in range(ncols):
X, Y, Z, pnum = get_data(row, col)
ax = fig.add_subplot(nrows, ncols, pnum, projection='3d')
ax.set_title('row = {}, col = {}'.format(row, col))
fhandle = ax.plot_surface(X, Y, Z, cmap=cmap)
zz.append(Z)
axes.append(ax)
## get full range of Z data as flat list for top and bottom rows
zz_top = zz[0].reshape(-1).tolist() + zz[1].reshape(-1).tolist()
zz_btm = zz[2].reshape(-1).tolist() + zz[3].reshape(-1).tolist()
## get top and bottom axes
ax_top = [axes[0], axes[1]]
ax_btm = [axes[2], axes[3]]
## normalize colors to minimum and maximum values of dataset
norm_top = matplotlib.colors.Normalize(vmin=min(zz_top), vmax=max(zz_top))
norm_btm = matplotlib.colors.Normalize(vmin=min(zz_btm), vmax=max(zz_btm))
cmap = cm.get_cmap(cmap, ncontours) # number of colors on colorbar
mtop = cm.ScalarMappable(cmap=cmap, norm=norm_top)
mbtm = cm.ScalarMappable(cmap=cmap, norm=norm_btm)
for m in (mtop, mbtm):
m.set_array([])
# ## create cax to draw colorbar in
# cax_top = fig.add_axes([0.9, 0.55, 0.05, 0.4])
# cax_btm = fig.add_axes([0.9, 0.05, 0.05, 0.4])
cbar_top = fig.colorbar(mtop, ax=ax_top, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_top)
cbar_top.set_ticks(np.linspace(min(zz_top), max(zz_top), ncontours))
cbar_btm = fig.colorbar(mbtm, ax=ax_btm, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_btm)
cbar_btm.set_ticks(np.linspace(min(zz_btm), max(zz_btm), ncontours))
plt.show()
plt.close(fig)
## orientation of colorbar = 'horizontal' if done by column
This topic is well covered but I still would like to propose another approach in a slightly different philosophy.
It is a bit more complex to set-up but it allow (in my opinion) a bit more flexibility. For example, one can play with the respective ratios of each subplots / colorbar:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.gridspec import GridSpec
# Define number of rows and columns you want in your figure
nrow = 2
ncol = 3
# Make a new figure
fig = plt.figure(constrained_layout=True)
# Design your figure properties
widths = [3,4,5,1]
gs = GridSpec(nrow, ncol + 1, figure=fig, width_ratios=widths)
# Fill your figure with desired plots
axes = []
for i in range(nrow):
for j in range(ncol):
axes.append(fig.add_subplot(gs[i, j]))
im = axes[-1].pcolormesh(np.random.random((10,10)))
# Shared colorbar
axes.append(fig.add_subplot(gs[:, ncol]))
fig.colorbar(im, cax=axes[-1])
plt.show()
The answers above are great, but most of them use the fig.colobar() method applied to a fig object. This example shows how to use the plt.colobar() function, applied directly to pyplot:
def shared_colorbar_example():
fig, axs = plt.subplots(nrows=3, ncols=3)
for ax in axs.flat:
plt.sca(ax)
color = np.random.random((10))
plt.scatter(range(10), range(10), c=color, cmap='viridis', vmin=0, vmax=1)
plt.colorbar(ax=axs.ravel().tolist(), shrink=0.6)
plt.show()
shared_colorbar_example()
Since most answers above demonstrated usage on 2D matrices, I went with a simple scatter plot. The shrink keyword is optional and resizes the colorbar.
If vmin and vmax are not specified this approach will automatically analyze all of the subplots for the minimum and maximum value to be used on the colorbar. The above approaches when using fig.colorbar(im) scan only the image passed as argument for min and max values of the colorbar.
Result:

Python keeps overwriting hist on previous plot but doesn't save it with the desired plot

I am saving two separate figures, that each should contain 2 plots together.
The problem is that the first figure is ok, but the second one, does not gets overwritten on the new plot but on the previous one, but in the saved figure, I only find one of the plots :
This is the first figure , and I get the first figure correctly :
import scipy.stats as s
import numpy as np
import os
import pandas as pd
import openpyxl as pyx
import matplotlib
matplotlib.rcParams["backend"] = "TkAgg"
#matplotlib.rcParams['backend'] = "Qt4Agg"
#matplotlib.rcParams['backend'] = "nbAgg"
import matplotlib.pyplot as plt
import math
data = [336256, 620316, 958846, 1007830, 1080401]
pdf = array([ 0.00449982, 0.0045293 , 0.00455894, 0.02397463,
0.02395788, 0.02394114])
fig, ax = plt.subplots();
fig = plt.figure(figsize=(40,30))
x = np.linspace(np.min(data), np.max(data), 100);
plt.plot(x, s.exponweib.pdf(x, *s.exponweib.fit(data, 1, 1, loc=0, scale=2)))
plt.hist(data, bins = np.linspace(data[0], data[-1], 100), normed=True, alpha= 1)
text1= ' Weibull'
plt.savefig(text1+ '.png' )
datar =np.asarray(data)
mu, sigma = datar.mean() , datar.std() # mean and standard deviation
normal_std = np.sqrt(np.log(1 + (sigma/mu)**2))
normal_mean = np.log(mu) - normal_std**2 / 2
hs = np.random.lognormal(normal_mean, normal_std, 1000)
print(hs.max()) # some finite number
print(hs.mean()) # about 136519
print(hs.std()) # about 50405
count, bins, ignored = plt.hist(hs, 100, normed=True)
x = np.linspace(min(bins), max(bins), 10000)
pdfT = [];
for el in range (len(x)):
pdfTmp = (math.exp(-(np.log(x[el]) - normal_mean)**2 / (2 * normal_std**2)))
pdfT += [pdfTmp]
pdf = np.asarray(pdfT)
This is the second set :
fig, ax = plt.subplots();
fig = plt.figure(figsize=(40,40))
plt.plot(x, pdf, linewidth=2, color='r')
plt.hist(data, bins = np.linspace(data[0], data[-1], 100), normed=True, alpha= 1)
text= ' Lognormal '
plt.savefig(text+ '.png' )
The first plot saves the histogram together with curve. instead the second one only saves the curve
update 1 : looking at This Question , I found out that clearing the plot history will help the figures don't mixed up , but still my second set of plots, I mean the lognormal do not save together, I only get the curve and not the histogram.
This is happening, because you have set normed = True, which means that area under the histogram is normalized to 1. And since your bins are very wide, this means that the actual height of the histogram bars are very small (in this case so small that they are not visible)
If you use
n, bins, _ = plt.hist(data, bins = np.linspace(data[0], data[-1], 100), normed=True, alpha= 1)
n will contain the y-value of your bins and you can confirm this yourself.
Also have a look at the documentation for plt.hist.
So if you set normed to False, the histogram will be visible.
Edit: number of bins
import numpy as np
import matplotlib.pyplot as plt
rand_data = np.random.uniform(0, 1.0, 100)
fig = plt.figure()
ax_1 = fig.add_subplot(211)
ax_1.hist(rand_data, bins=10)
ax_2 = fig.add_subplot(212)
ax_2.hist(rand_data, bins=100)
plt.show()
will give you two plots similar (since its random) to:
which shows how the number of bins changes the histogram.
A histogram visualises the distribution of your data along one dimension, so not sure what you mean by number of inputs and bins.

How to color bars who make up 50% of the data?

I am plotting a histogram for some data points with bar heights being the percentage of that bin from the whole data:
x = normal(size=1000)
hist, bins = np.histogram(x, bins=20)
plt.bar(bins[:-1], hist.astype(np.float32) / hist.sum(), width=(bins[1]-bins[0]), alpha=0.6)
The result is:
I would like all bars that sum up to be 50% of the data to be in a different color, for example:
(I selected the colored bars without actually checking whether their sum adds to 50%)
Any suggestions how to accomplish this?
Here is how you can plot the first half of the bins with a different color, this looks like your mock, but I am not sure it complies to %50 of the data (it is not clear to me what do you mean by that).
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)
fig = plt.figure()
ax = fig.add_subplot(111)
# the histogram of the data
n, bins, patches = ax.hist(x, 50, normed=1, facecolor='green', alpha=0.75)
# now that we found the index we color all the beans smaller than middle index
for p in patches[:len(bins)/2]:
p.set_facecolor('red')
# hist uses np.histogram under the hood to create 'n' and 'bins'.
# np.histogram returns the bin edges, so there will be 50 probability
# density values in n, 51 bin edges in bins and 50 patches. To get
# everything lined up, we'll compute the bin centers
bincenters = 0.5*(bins[1:]+bins[:-1])
# add a 'best fit' line for the normal PDF
y = mlab.normpdf( bincenters, mu, sigma)
l = ax.plot(bincenters, y, 'r--', linewidth=1)
ax.set_xlabel('Smarts')
ax.set_ylabel('Probability')
ax.set_xlim(40, 160)
ax.set_ylim(0, 0.03)
ax.grid(True)
plt.show()
And the output is:
update
The key method you want to look at is patch.set_set_facecolor. You have to understand that almost everything you plot inside the axes object is a Patch, and as such it has this method, here is another example, I arbitrary choose the first 3 bars to have another color, you can choose based on what ever you decide:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
## the data
N = 5
menMeans = [18, 35, 30, 35, 27]
## necessary variables
ind = np.arange(N) # the x locations for the groups
width = 0.35 # the width of the bars
## the bars
rects1 = ax.bar(ind, menMeans, width,
color='black',
error_kw=dict(elinewidth=2,ecolor='red'))
for patch in rects1.patches[:3]:
patch.set_facecolor('red')
ax.set_xlim(-width,len(ind)+width)
ax.set_ylim(0,45)
ax.set_ylabel('Scores')
xTickMarks = ['Group'+str(i) for i in range(1,6)]
ax.set_xticks(ind)
xtickNames = ax.set_xticklabels(xTickMarks)
plt.setp(xtickNames, rotation=45, fontsize=10)
plt.show()

matplotlib secondary axes that spans half of the first one

I need a plot with two y axis but the second one should be half of the first one.
I was thinking on two different plot overlapped but I guess there is a simpler way.
Thank you very much.
You should check matplotlib gallery.
Maybe you are looking for something like this or this.
Then if you want ax2 (right axis) to span half of ax1 (left axis), get the y-limits of ax1:
(min_y, max_y) = ax1.get_ylim()
and set ax2 limits accordingly. For example:
ax2.set_ylim((min_y, max_y / 2.))
Edit:
After your comments, I worked a solution that probably fits better your needs. Here is the code modified from mpl gallery:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(111)
t = np.arange(0.01, 10.0, 0.01)
s1 = np.exp(t)
ax1.plot(t, s1, 'b-')
ax1.set_xlabel('time (s)')
ax1.set_ylabel('exp', color='b')
for tl in ax1.get_yticklabels():
tl.set_color('b')
ax2 = ax1.twinx()
s2 = np.sin(2*np.pi*t)
ax2.plot(t, s2, 'r.')
ax2.set_ylabel('sin', color='r')
(min_y, max_y) = ax2.get_ylim()
dist = (max_y - min_y) * 2.
ax2.set_ylim((min_y, max_y + dist))
yticklabels = ax2.get_yticklabels()
yticks = ax2.get_yticklines()
nlabels = len(yticklabels) / 2
nticks = len(yticks) / 2
for i in range(len(yticklabels)):
if i < nlabels:
yticklabels[i].set_color('r')
else:
yticklabels[i].set_visible(False)
for i in range(len(yticks)):
if i < nticks:
yticks[i].set_color('r')
else:
yticks[i].set_visible(False)
plt.show()