HOW - to convert a python generator to pandas dataframe - pandas

Im very new to python and pandas dataframe and im struggling to wrap my head around how to convert a python generator to a pandas dataframe.
What i want to do is to fetch a large table into chunks with this function that yields a generator:
def fetch_data_into_chunks(cursor, arraysize=10**5):
while True:
results = cursor.fetchmany(arraysize)
if not results:
break
for result in results:
yield result
Then i want to append or concat the result to a pandas dataframe:
for data in fetch_data_into_chunks(cursor):
df.append(data)
But this doesnt works and give me the error message:
TypeError: cannot concatenate object of type "<class 'pyodbc.Row'>"; only pd.Series, pd.DataFrame, and pd.Panel (deprecated) objs are valid
Thanks for the help!

Assuming you have a connection to a sql database, you can use Pandas's built-in read_sql method and specify a chunksize. This is in itself a generator, which you can iterate through to create a single dataframe.
In this example, sql is your sql query and conn is the connection to your database.
def fetch_data(sql, chunksize=10**5):
df = pd.DataFrame()
reader = pd.read_sql(sql,
conn,
chunksize=chunksize)
for chunk in reader:
df = pd.concat([df, chunk], ignore_index=True)
return df

Related

dtype definition for pandas dataframe with columns of VARCHAR or String

I want to get some data in a dictionary that need to go into a pandas dataframe.
The dataframe is later written in a PostgreSQL table using sqlalchemy, and I would like to get the right column types.
Hence, I specify the dtypes for the dataframe
dtypes = {"forretningshændelse": sqlalchemy.types.String(length=8),
"forretningsområde": sqlalchemy.types.String(length=40),
"forretningsproces": sqlalchemy.types.INTEGER(),
"id_namespace": sqlalchemy.types.String(length=100),
"id_lokalId": sqlalchemy.types.String(length=36),
"kommunekode": sqlalchemy.types.INTEGER(),
"registreringFra": sqlalchemy.types.DateTime()}
Later I use df = pd.DataFrame(item_lst, dtype=dtypes), where item_lst is a list of dictionaries.
Independent from me using either String(8), String(length=8) or VARCHAR(8) in the dtype definition, the result of pd.DataFrame(item_lst, dtype=dtypes) is always object of type '(String or VARCHAR)' has no len().
How do I have to define the dtype to overcome this error?
Instead of forcing data types when the DataFrame is created, let pandas infer the data types (just df = pd.DataFrame(item_lst)) and then use your dtypes dict with to_sql() when you push your DataFrame to the database, like this:
from pprint import pprint
import pandas as pd
import sqlalchemy
engine = sqlalchemy.create_engine("sqlite://")
item_lst = [{"forretningshændelse": "foo"}]
df = pd.DataFrame(item_lst)
print(df.info())
"""
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1 entries, 0 to 0
Data columns (total 1 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 forretningshændelse 1 non-null object
dtypes: object(1)
memory usage: 136.0+ bytes
None
"""
dtypes = {"forretningshændelse": sqlalchemy.types.String(length=8)}
df.to_sql("tbl", engine, index=False, dtype=dtypes)
insp = sqlalchemy.inspect(engine)
pprint(insp.get_columns("tbl"))
"""
[{'autoincrement': 'auto',
'default': None,
'name': 'forretningshændelse',
'nullable': True,
'primary_key': 0,
'type': VARCHAR(length=8)}]
"""
I believe you are confusing the dtypes within the DataFrame with the dtypes on the SQL table itself.
You probably don't need to manually specify the datatypes in pandas itself but if you do, here's how.
Spoiler alert: it is written in the pandas.Dataframe documentation that only a single dtype must be specified so you will need some loops or manual column work to get different types.
To solve your problem:
import pandas as pd
import sqlalchemy
engine = sqlalchemy.create_engine("connection_string")
df = pd.DataFrame(item_list)
dtypes = {"forretningshændelse": sqlalchemy.types.String(length=8),
"forretningsområde": sqlalchemy.types.String(40),
"forretningsproces": sqlalchemy.types.INTEGER(),
"id_namespace": sqlalchemy.types.String(100),
"id_lokalId": sqlalchemy.types.String(36),
"kommunekode": sqlalchemy.types.INTEGER(),
"registreringFra": sqlalchemy.types.DateTime()}
with engine.connect() as engine:
df.to_sql("table_name",if_exists="replace", con=engine, dtype=dtypes)
Tip: Avoid using special characters while coding in general, it only makes maintaining code harder at some point :). I assumed you're creating a new sql table and not appending, otherwise types for the table would already be defined.
Happy Coding!

Pandas Rolling Operation on Categorical column

The code I am trying to execute:
for cat_name in df['movement_state'].cat.categories:
transformed_df[f'{cat_name} Count'] = grouped_df['movement_state'].rolling(rolling_window_size, closed='both').apply(lambda s, cat=cat_name: s.value_counts()[cat])
transformed_df[f'{cat_name} Ratio'] = grouped_df['movement_state'].rolling(rolling_window_size, closed='both').apply(lambda s, cat=cat_name: s.value_counts(normalize=True)[cat])
For reproduction purposes just assume the following:
import numpy as np
import pandas as pd
d = {'movement_state': pd.Categorical(np.random.choice(['moving', 'standing', 'parking'], 20))}
grouped_df = pd.DataFrame.from_dict(d)
rolling_window_size = 3
I want to do rolling window operations on my GroupBy Object. I am selecting the column movement_state beforehand. This column is categorical as shown below.
grouped_df['movement_state'].dtypes
# Output
CategoricalDtype(categories=['moving', 'parking', 'standing'], ordered=False)
If I execute, I get these error messages:
pandas.core.base.DataError: No numeric types to aggregate
TypeError: cannot handle this type -> category
ValueError: could not convert string to float: 'standing'
Inside this code snippet of rolling.py from the pandas source code I read that the data must be converted to float64 before it can be processed by cython.
def _prep_values(self, values: ArrayLike) -> np.ndarray:
"""Convert input to numpy arrays for Cython routines"""
if needs_i8_conversion(values.dtype):
raise NotImplementedError(
f"ops for {type(self).__name__} for this "
f"dtype {values.dtype} are not implemented"
)
else:
# GH #12373 : rolling functions error on float32 data
# make sure the data is coerced to float64
try:
if isinstance(values, ExtensionArray):
values = values.to_numpy(np.float64, na_value=np.nan)
else:
values = ensure_float64(values)
except (ValueError, TypeError) as err:
raise TypeError(f"cannot handle this type -> {values.dtype}") from err
My question to you
Is it possible to count the values of a categorical column in a pandas DataFrame using the rolling method as I tried to do?
A possible workaround a came up with is to just use the codes of the categorical column instead of the string values. But this way, s.value_counts()[cat] would raise a KeyError if the window I am looking at does not contain every possible value.

How can I skip even/odd rows while reading a csv file?

Is there a simple way to ignore all even/odd rows when reading a csv using pandas?
I know skiprows argument in pd.read_csv but for that I'll need to know the number of rows in advance.
The pd.read_csv skiprows argument accepts a callable, so you could use a lambda function. E.g.:
df = pd.read_csv(some_path, skiprows=lambda x: x%2 == 0)
A possible solution after reading would be:
import pandas as pd
df = pd.read_csv(some_path)
# remove odd rows:
df = df.iloc[::2]
# remove even rows:
df = df.iloc[1::2]

python How to select the latest sample per user as testing data?

My data is as below. I want to sort by the timestamp and use the latest sample of each userid as the testing data. How should I do the train and test split? What I have tried is using pandas to sort_values timestamp and then groupby 'userid'. But I only get a groupby object. What is the correct way to do that? Is pyspark a better tool?
After I get the dataframe of the testing data, how should split data? Obviously I cannot use sklearn's train_test_split.
You could do the following:
# Sort the data by time stamp
df = df.sort_values('timestamp')
# Group by userid and get the last entry from each group
test_df = df.groupby(by='userid', as_index=False).nth(-1)
# The rest of the values
train_df = df.drop(test_df.index)
You can do the following:
import pyspark.sql.functions as F
max_df = df.groupby("userid").agg(F.max("timestamp"))
# join it back to the original DF
df = df.join(max_df, on="userid")
train_df = df.filter(df["timestamp"] != df["max(timestamp)"])
test_df = df.filter(df["timestamp"] == df["max(timestamp)"])

Converting DataFrame into sql

I am using the following code to convert my pandas into sql, but I get the following error although my dtype is float64 for this particular column.
I have tried to convert my dtype to str, but this did not work.
import sqlite3
import pandas as pd
#create db file
db = conn = sqlite3.connect(‘example.db’)
#convert my df data to sql
df = df(‘users’ , con=db, if_exists='replace')
InterfaceError: Error binding parameter 1214 - probably unsupported type.
However when I check the parameter 1214 i.e. column 1214 in my df. This col has a float64 dtype. I don't understand then how to solve this problem.
Double check your data types, as SQLite supports a limited number of data types --> https://www.sqlite.org/datatype3.html. My guess would be to use a float dtype (so try dtype='float')