Terraform list element out of bounds? - indexing

From the Terraform docs:
element(list, index) - Returns a single element from a list at the given index. If the index is greater than the number of elements, this function will wrap using a standard mod algorithm.
What would be a good reason to wrap using mod? This behavior seems to me like it could be the cause of lots of headaches.
At the top of my head I can only remember two other approaches to handle accessing an element that's out of bounds:
Python/Ruby: return None/Nil
Java/JS/Ruby: Raise an error
I'm so used to them that they seem to make sense, you either get nothing or an error but why would you ever expect to get the k mod n element in the list? If you were the implementer, how would you justify this choice of behavior.

It's a shortcut for having to do the mod yourself but can be useful when looping over a short list such as the amount of subnets or availability zones that you want to put multiple instances in.
This is a pretty common pattern and appears in the aws_subnet_ids data source docs:
data "aws_subnet_ids" "private" {
vpc_id = "${var.vpc_id}"
tags {
Tier = "Private"
}
}
resource "aws_instance" "app" {
count = 6
ami = "${var.ami}"
instance_type = "t2.micro"
subnet_id = "${element(data.aws_subnet_ids.private.ids, count.index)}"
}
If you were to use the slice operator instead you would get an index out of bounds exception as soon as you have more instances than subnets returned by the data source.

Related

How to use hyperoperators with Scalars that aren't really scalar?

I want to make a hash of sets. Well, SetHashes, since they need to be mutable.
In fact, I would like to initialize my Hash with multiple identical copies of the same SetHash.
I have an array containing the keys for the new hash: #keys
And I have my SetHash already initialized in a scalar variable: $set
I'm looking for a clean way to initialize the hash.
This works:
my %hash = ({ $_ => $set.clone } for #keys);
(The parens are needed for precedence; without them, the assignment to %hash is part of the body of the for loop. I could change it to a non-postfix for loop or make any of several other minor changes to get the same result in a slightly different way, but that's not what I'm interested in here.)
Instead, I was kind of hoping I could use one of Raku's nifty hyper-operators, maybe like this:
my %hash = #keys »=>» $set;
That expression works a treat when $set is a simple string or number, but a SetHash?
Array >>=>>> SetHash can never work reliably: order of keys in SetHash is indeterminate
Good to know, but I don't want it to hyper over the RHS, in any order. That's why I used the right-pointing version of the hyperop: so it would instead replicate the RHS as needed to match it up to the LHS. In this sort of expression, is there any way to say "Yo, Raku, treat this as a scalar. No, really."?
I tried an explicit Scalar wrapper (which would make the values harder to get at, but it was an experiment):
my %map = #keys »=>» $($set,)
And that got me this message:
Lists on either side of non-dwimmy hyperop of infix:«=>» are not of the same length while recursing
left: 1 elements, right: 4 elements
So it has apparently recursed into the list on the left and found a single key and is trying to map it to a set on the right which has 4 elements. Which is what I want - the key mapped to the set. But instead it's mapping it to the elements of the set, and the hyperoperator is pointing the wrong way for that combination of sizes.
So why is it recursing on the right at all? I thought a Scalar container would prevent that. The documentation says it prevents flattening; how is this recursion not flattening? What's the distinction being drawn?
The error message says the version of the hyperoperator I'm using is "non-dwimmy", which may explain why it's not in fact doing what I mean, but is there maybe an even-less-dwimmy version that lets me be even more explicit? I still haven't gotten my brain aligned well enough with the way Raku works for it to be able to tell WIM reliably.
I'm looking for a clean way to initialize the hash.
One idiomatic option:
my %hash = #keys X=> $set;
See X metaoperator.
The documentation says ... a Scalar container ... prevents flattening; how is this recursion not flattening? What's the distinction being drawn?
A cat is an animal, but an animal is not necessarily a cat. Flattening may act recursively, but some operations that act recursively don't flatten. Recursive flattening stops if it sees a Scalar. But hyperoperation isn't flattening. I get where you're coming from, but this is not the real problem, or at least not a solution.
I had thought that hyperoperation had two tests controlling recursing:
Is it hyperoperating a nodal operation (eg .elems)? If so, just apply it like a parallel shallow map (so don't recurse). (The current doc quite strongly implies that nodal can only be usefully applied to a method, and only a List one (or augmentation thereof) rather than any routine that might get hyperoperated. That is much more restrictive than I was expecting, and I'm sceptical of its truth.)
Otherwise, is a value Iterable? If so, then recurse into that value. In general the value of a Scalar automatically behaves as the value it contains, and that applies here. So Scalars won't help.
A SetHash doesn't do the Iterable role. So I think this refusal to hyperoperate with it is something else.
I just searched the source and that yields two matches in the current Rakudo source, both in the Hyper module, with this one being the specific one we're dealing with:
multi method infix(List:D \left, Associative:D \right) {
die "{left.^name} $.name {right.^name} can never work reliably..."
}
For some reason hyperoperation explicitly rejects use of Associatives on either the right or left when coupled with the other side being a List value.
Having pursued the "blame" (tracking who made what changes) I arrived at the commit "Die on Associative <<op>> Iterable" which says:
This can never work due to the random order of keys in the Associative.
This used to die before, but with a very LTA error about a Pair.new()
not finding a suitable candidate.
Perhaps this behaviour could be refined so that the determining factor is, first, whether an operand does the Iterable role, and then if it does, and is Associative, it dies, but if it isn't, it's accepted as a single item?
A search for "can never work reliably" in GH/rakudo/rakudo issues yields zero matches.
Maybe file an issue? (Update I filed "RFC: Allow use of hyperoperators with an Associative that does not do Iterable role instead of dying with "can never work reliably".)
For now we need to find some other technique to stop a non-Iterable Associative being rejected. Here I use a Capture literal:
my %hash = #keys »=>» \($set);
This yields: {a => \(SetHash.new("b","a","c")), b => \(SetHash.new("b","a","c")), ....
Adding a custom op unwraps en passant:
sub infix:« my=> » ($lhs, $rhs) { $lhs => $rhs[0] }
my %hash = #keys »my=>» \($set);
This yields the desired outcome: {a => SetHash(a b c), b => SetHash(a b c), ....
my %hash = ({ $_ => $set.clone } for #keys);
(The parens seem to be needed so it can tell that the curlies are a block instead of a Hash literal...)
No. That particular code in curlies is a Block regardless of whether it's in parens or not.
More generally, Raku code of the form {...} in term position is almost always a Block.
For an explanation of when a {...} sequence is a Hash, and how to force it to be one, see my answer to the Raku SO Is that a Hash or a Block?.
Without the parens you've written this:
my %hash = { block of code } for #keys
which attempts to iterate #keys, running the code my %hash = { block of code } for each iteration. The code fails because you can't assign a block of code to a hash.
Putting parens around the ({ block of code } for #keys) part completely alters the meaning of the code.
Now it runs the block of code for each iteration. And it concatenates the result of each run into a list of results, each of which is a Pair generated by the code $_ => $set.clone. Then, when the for iteration has completed, that resulting list of pairs is assigned, once, to my %hash.

why are objects clipping behind each other?

I'm making a script that sorts the depth for my objects by prioritizing the y variable, but then afterwards checks to see if the objects that are touching each other have a higher depth the further to the right they are, but for some reason the last part isn't working.
Here's the code:
ds_grid_sort(_dg,1,true);
_yy = 0;
repeat _inst_num
{
_inst = _dg[# 0, _yy];
with _inst
{
with other
{
if (x > _inst.x and y = _inst.y)
{
_inst.depth = depth + building_space;
}
}
}
_yy++;
}
I've identified that the problem is that nothing comes out as true when the game checks the y = _inst.y part of the _inst statement, but that doesn't make any sense seeing how they're all at the same y coordinate. Could someone please tell me what I'm doing wrong?
As Steven mentioned, it's good practice to use double equal signs for comparisons (y == _inst.y) and a single equals sign for assignments (_yy = 0;), but GML doesn't care if you use a single equals sign for comparison, so it won't be causing your issue. Though it does matter in pretty much every other language besides GML.
From what I understand, the issue seems to be your use of other. When you use the code with other, it doesn't iterate through all other objects, it only grabs one instance. You can test this by running this code and seeing how many debug messages it shows:
...
with other
{
show_debug_message("X: "+string(x)+"; Y: "+string(y));
...
You could use with all. That will iterate through all objects or with object, where object is either an object or parent object. That will iterate through all instances of that object. However, neither of these functions check whether the objects overlap (it's just going to iterate over all of them), so you'll have to check for collisions. You could do something like this:
...
with all
{
if place_meeting(x, y, other)
{
if (x > _inst.x and y = _inst.y)
{
_inst.depth = depth + building_space;
}
}
...
I don't know what the rest of your code looks like, but there might be an easier way to achieve your goal. Is it possible to initially set the depth based on both the x and y variables? Something such as depth = -x-y;? For people not as familiar with GameMaker, objects with a smaller depth value are drawn above objects with higher depth values; that is why I propose setting the depth to be -x-y. Below is what a view of that grid would look like (first row and column are x and y variables; the other numbers would be the depth of an object at that position):
Having one equation that everything operates on will also make it so that if you have anything moving (such as a player), you can easily and efficiently update their depth to be able to display them correctly relative to all the other objects.
I think it should be y == _inst.y.
But I'm not sure as GML tends to accept such formatting.
It's a better practise to use == to check if they're equal when using conditions.

Kotlin: Why is Sequence more performant in this example?

Currently, I am looking into Kotlin and have a question about Sequences vs. Collections.
I read a blog post about this topic and there you can find this code snippets:
List implementation:
val list = generateSequence(1) { it + 1 }
.take(50_000_000)
.toList()
measure {
list
.filter { it % 3 == 0 }
.average()
}
// 8644 ms
Sequence implementation:
val sequence = generateSequence(1) { it + 1 }
.take(50_000_000)
measure {
sequence
.filter { it % 3 == 0 }
.average()
}
// 822 ms
The point here is that the Sequence implementation is about 10x faster.
However, I do not really understand WHY that is. I know that with a Sequence, you do "lazy evaluation", but I cannot find any reason why that helps reducing the processing in this example.
However, here I know why a Sequence is generally faster:
val result = sequenceOf("a", "b", "c")
.map {
println("map: $it")
it.toUpperCase()
}
.any {
println("any: $it")
it.startsWith("B")
}
Because with a Sequence you process the data "vertically", when the first element starts with "B", you don't have to map for the rest of the elements. It makes sense here.
So, why is it also faster in the first example?
Let's look at what those two implementations are actually doing:
The List implementation first creates a List in memory with 50 million elements.  This will take a bare minimum of 200MB, since an integer takes 4 bytes.
(In fact, it's probably far more than that.  As Alexey Romanov pointed out, since it's a generic List implementation and not an IntList, it won't be storing the integers directly, but will be ‘boxing’ them — storing references to Int objects.  On the JVM, each reference could be 8 or 16 bytes, and each Int could take 16, giving 1–2GB.  Also, depending how the List gets created, it might start with a small array and keep creating larger and larger ones as the list grows, copying all the values across each time, using more memory still.)
Then it has to read all the values back from the list, filter them, and create another list in memory.
Finally, it has to read all those values back in again, to calculate the average.
The Sequence implementation, on the other hand, doesn't have to store anything!  It simply generates the values in order, and as it does each one it checks whether it's divisible by 3 and if so includes it in the average.
(That's pretty much how you'd do it if you were implementing it ‘by hand’.)
You can see that in addition to the divisibility checking and average calculation, the List implementation is doing a massive amount of memory access, which will take a lot of time.  That's the main reason it's far slower than the Sequence version, which doesn't!
Seeing this, you might ask why we don't use Sequences everywhere…  But this is a fairly extreme example.  Setting up and then iterating the Sequence has some overhead of its own, and for smallish lists that can outweigh the memory overhead.  So Sequences only have a clear advantage in cases when the lists are very large, are processed strictly in order, there are several intermediate steps, and/or many items are filtered out along the way (especially if the Sequence is infinite!).
In my experience, those conditions don't occur very often.  But this question shows how important it is to recognise them when they do!
Leveraging lazy-evaluation allows avoiding the creation of intermediate objects that are irrelevant from the point of the end goal.
Also, the benchmarking method used in the mentioned article is not super accurate. Try to repeat the experiment with JMH.
Initial code produces a list containing 50_000_000 objects:
val list = generateSequence(1) { it + 1 }
.take(50_000_000)
.toList()
then iterates through it and creates another list containing a subset of its elements:
.filter { it % 3 == 0 }
... and then proceeds with calculating the average:
.average()
Using sequences allows you to avoid doing all those intermediate steps. The below code doesn't produce 50_000_000 elements, it's just a representation of that 1...50_000_000 sequence:
val sequence = generateSequence(1) { it + 1 }
.take(50_000_000)
adding a filtering to it doesn't trigger the calculation itself as well but derives a new sequence from the existing one (3, 6, 9...):
.filter { it % 3 == 0 }
and eventually, a terminal operation is called that triggers the evaluation of the sequence and the actual calculation:
.average()
Some relevant reading:
Kotlin: Beware of Java Stream API Habits
Kotlin Collections API Performance Antipatterns

Kotlin stdlib operatios vs for loops

I wrote the following code:
val src = (0 until 1000000).toList()
val dest = ArrayList<Double>(src.size / 2 + 1)
for (i in src)
{
if (i % 2 == 0) dest.add(Math.sqrt(i.toDouble()))
}
IntellJ (in my case AndroidStudio) is asking me if I want to replace the for loop with operations from stdlib. This results in the following code:
val src = (0 until 1000000).toList()
val dest = ArrayList<Double>(src.size / 2 + 1)
src.filter { it % 2 == 0 }
.mapTo(dest) { Math.sqrt(it.toDouble()) }
Now I must say, I like the changed code. I find it easier to write than for loops when I come up with similar situations. However upon reading what filter function does, I realized that this is a lot slower code compared to the for loop. filter function creates a new list containing only the elements from src that match the predicate. So there is one more list created and one more loop in the stdlib version of the code. Ofc for small lists it might not be important, but in general this does not sound like a good alternative. Especially if one should chain more methods like this, you can get a lot of additional loops that could be avoided by writing a for loop.
My question is what is considered good practice in Kotlin. Should I stick to for loops or am I missing something and it does not work as I think it works.
If you are concerned about performance, what you need is Sequence. For example, your above code will be
val src = (0 until 1000000).toList()
val dest = ArrayList<Double>(src.size / 2 + 1)
src.asSequence()
.filter { it % 2 == 0 }
.mapTo(dest) { Math.sqrt(it.toDouble()) }
In the above code, filter returns another Sequence, which represents an intermediate step. Nothing is really created yet, no object or array creation (except a new Sequence wrapper). Only when mapTo, a terminal operator, is called does the resulting collection is created.
If you have learned java 8 stream, you may found the above explaination somewhat familiar. Actually, Sequence is roughly the kotlin equivalent of java 8 Stream. They share similiar purpose and performance characteristic. The only difference is Sequence isn't designed to work with ForkJoinPool, thus a lot easier to implement.
When there is multiple steps involved or the collection may be large, it's suggested to use Sequence instead of plain .filter {...}.mapTo{...}. I also suggest you to use the Sequence form instead of your imperative form because it's easier to understand. Imperative form may become complex, thus hard to understand, when there are 5 or more steps involved in the data processing. If there is just one step, you don't need a Sequence, because it just creates garbage and gives you nothing useful.
You're missing something. :-)
In this particular case, you can use an IntProgression:
val progression = 0 until 1_000_000 step 2
You can then create your desired list of squares in various ways:
// may make the list larger than necessary
// its internal array is copied each time the list grows beyond its capacity
// code is very straight forward
progression.map { Math.sqrt(it.toDouble()) }
// will make the list the exact size needed
// no copies are made
// code is more complicated
progression.mapTo(ArrayList(progression.last / 2 + 1)) { Math.sqrt(it.toDouble()) }
// will make the list the exact size needed
// a single intermediate list is made
// code is minimal and makes sense
progression.toList().map { Math.sqrt(it.toDouble()) }
My advice would be to choose whichever coding style you prefer. Kotlin is both object-oriented and functional language, meaning both of your propositions are correct.
Usually, functional constructs favor readability over performance; however, in some cases, procedural code will also be more readable. You should try to stick with one style as much as possible, but don't be afraid to switch some code if you feel like it's better suited to your constraints, either readability, performance, or both.
The converted code does not need the manual creation of the destination list, and can be simplified to:
val src = (0 until 1000000).toList()
val dest = src.filter { it % 2 == 0 }
.map { Math.sqrt(it.toDouble()) }
And as mentioned in the excellent answer by #glee8e you can use a sequence to do a lazy evaluation. The simplified code for using a sequence:
val src = (0 until 1000000).toList()
val dest = src.asSequence() // change to lazy
.filter { it % 2 == 0 }
.map { Math.sqrt(it.toDouble()) }
.toList() // create the final list
Note the addition of the toList() at the end is to change from a sequence back to a final list which is the one copy made during the processing. You can omit that step to remain as a sequence.
It is important to highlight the comments by #hotkey saying that you should not always assume that another iteration or a copy of a list causes worse performance than lazy evaluation. #hotkey says:
Sometimes several loops. even if they copy the whole collection, show good performance because of good locality of reference. See: Kotlin's Iterable and Sequence look exactly same. Why are two types required?
And excerpted from that link:
... in most cases it has good locality of reference thus taking advantage of CPU cache, prediction, prefetching etc. so that even multiple copying of a collection still works good enough and performs better in simple cases with small collections.
#glee8e says that there are similarities between Kotlin sequences and Java 8 streams, for detailed comparisons see: What Java 8 Stream.collect equivalents are available in the standard Kotlin library?

Is it safe, to share an array between threads?

Is it safe, to share an array between promises like I did it in the following code?
#!/usr/bin/env perl6
use v6;
sub my_sub ( $string, $len ) {
my ( $s, $l );
if $string.chars > $len {
$s = $string.substr( 0, $len );
$l = $len;
}
else {
$s = $string;
$l = $s.chars;
}
return $s, $l;
}
my #orig = <length substring character subroutine control elements now promise>;
my $len = 7;
my #copy;
my #length;
my $cores = 4;
my $p = #orig.elems div $cores;
my #vb = ( 0..^$cores ).map: { [ $p * $_, $p * ( $_ + 1 ) ] };
#vb[#vb.end][1] = #orig.elems;
my #promise;
for #vb -> $r {
#promise.push: start {
for $r[0]..^$r[1] -> $i {
( #copy[$i], #length[$i] ) = my_sub( #orig[$i], $len );
}
};
}
await #promise;
It depends how you define "array" and "share". So far as array goes, there are two cases that need to be considered separately:
Fixed size arrays (declared my #a[$size]); this includes multi-dimensional arrays with fixed dimensions (such as my #a[$xs, $ys]). These have the interesting property that the memory backing them never has to be resized.
Dynamic arrays (declared my #a), which grow on demand. These are, under the hood, actually using a number of chunks of memory over time as they grow.
So far as sharing goes, there are also three cases:
The case where multiple threads touch the array over its lifetime, but only one can ever be touching it at a time, due to some concurrency control mechanism or the overall program structure. In this case the arrays are never shared in the sense of "concurrent operations using the arrays", so there's no possibility to have a data race.
The read-only, non-lazy case. This is where multiple concurrent operations access a non-lazy array, but only to read it.
The read/write case (including when reads actually cause a write because the array has been assigned something that demands lazy evaluation; note this can never happen for fixed size arrays, as they are never lazy).
Then we can summarize the safety as follows:
| Fixed size | Variable size |
---------------------+----------------+---------------+
Read-only, non-lazy | Safe | Safe |
Read/write or lazy | Safe * | Not safe |
The * indicating the caveat that while it's safe from Perl 6's point of view, you of course have to make sure you're not doing conflicting things with the same indices.
So in summary, fixed size arrays you can safely share and assign to elements of from different threads "no problem" (but beware false sharing, which might make you pay a heavy performance penalty for doing so). For dynamic arrays, it is only safe if they will only be read from during the period they are being shared, and even then if they're not lazy (though given array assignment is mostly eager, you're not likely to hit that situation by accident). Writing, even to different elements, risks data loss, crashes, or other bad behavior due to the growing operation.
So, considering the original example, we see my #copy; and my #length; are dynamic arrays, so we must not write to them in concurrent operations. However, that happens, so the code can be determined not safe.
The other posts already here do a decent job of pointing in better directions, but none nailed the gory details.
Just have the code that is marked with the start statement prefix return the values so that Perl 6 can handle the synchronization for you. Which is the whole point of that feature.
Then you can wait for all of the Promises, and get all of the results using an await statement.
my #promise = do for #vb -> $r {
start
do # to have the 「for」 block return its values
for $r[0]..^$r[1] -> $i {
$i, my_sub( #orig[$i], $len )
}
}
my #results = await #promise;
for #results -> ($i,$copy,$len) {
#copy[$i] = $copy;
#length[$i] = $len;
}
The start statement prefix is only sort-of tangentially related to parallelism.
When you use it you are saying, “I don't need these results right now, but probably will later”.
That is the reason it returns a Promise (asynchrony), and not a Thread (concurrency)
The runtime is allowed to delay actually running that code until you finally ask for the results, and even then it could just do all of them sequentially in the same thread.
If the implementation actually did that, it could result in something like a deadlock if you instead poll the Promise by continually calling it's .status method waiting for it to change from Planned to Kept or Broken, and only then ask for its result.
This is part of the reason the default scheduler will start to work on any Promise codes if it has any spare threads.
I recommend watching jnthn's talk “Parallelism, Concurrency,
and Asynchrony in Perl 6”.
slides
This answer applies to my understanding of the situation on MoarVM, not sure what the state of art is on the JVM backend (or the Javascript backend fwiw).
Reading a scalar from several threads can be done safely.
Modifying a scalar from several threads can be done without having to fear for a segfault, but you may miss updates:
$ perl6 -e 'my $i = 0; await do for ^10 { start { $i++ for ^10000 } }; say $i'
46785
The same applies to more complex data structures like arrays (e.g. missing values being pushed) and hashes (missing keys being added).
So, if you don't mind missing updates, changing shared data structures from several threads should work. If you do mind missing updates, which I think is what you generally want, you should look at setting up your algorithm in a different way, as suggested by #Zoffix Znet and #raiph.
No.
Seriously. Other answers seem to make too many assumptions about the implementation, none of which are tested by the spec.