Implicit arguments in Idris - idris

I need some help interpreting an error message regarding implicit arguments in Idris and why a small change fixes it. This is the code:
import Data.Vect
myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse {n} (x :: xs)
= let result = myReverse xs ++ [x] in
?rhs
It results in this error:
When checking left hand side of myReverse:
When checking an application of Main.myReverse:
Type mismatch between
Vect (S len) elem (Type of x :: xs)
and
Vect n elem (Expected type)
Specifically:
Type mismatch between
S len
and
n
However, replacing {n} with {n = S len}, the code type-checks.
I thought that using {n} was simply meant to bring the implicit n argument of the function into scope. Why would this result in an error?
What does the error message mean? The only interpretation I can think of is that the implicit argument n in the type is rewritten due to pattern-matching x::xs into S len, and Idris loses information that these are the same.
How does replacing it with {n = S len} work?

Your best bet in these cases is to use idris to do the programming for you. If you start with
myReverse : Vect n elem -> Vect n elem
myReverse {n} xs = ?myReverse_rhs
and now case split on xs you get
myReverse : Vect n elem -> Vect n elem
myReverse {n = Z} [] = ?myReverse_rhs_1
myReverse {n = (S len)} (x :: xs) = ?myReverse_rhs_2
So not only did idris do a case split on xs, but also on n, since for an empty vector the length must be Z, and for a nonempty vector it must be at least S len. Which also implies that xs is now of length len.
Since n is also on the right hand side of your function, it is obvious that you need to provide something for myReverse_rhs_2 which is of length S len which equals n when you did the pattern matching right.
In the error message idris doesn't know what n is, hence the message.

Related

Interface constraints for interface instances in Idris

I am just starting to learn Idris coming from Haskell, and I'm trying to write some simple linear algebra code.
I want to write a Num interface instance for Vect, but specifically for Vect n a with the constraint that a has a Num instance.
In Haskell I would write a typeclass instance like this:
instance Num a => Num (Vect n a) where
(+) a b = (+) <$> a <*> b
(*) a b = (*) <$> a <*> b
fromInteger a = a : Nil
But reading the Idris interface docs does not seem to mention constraints on interface instances.
The best I can do is the following, which predictably causes the compiler to lament about a not being a numeric type:
Num (Vect n a) where
(+) Nil Nil = Nil
(+) (x :: xs) (y :: ys) = x + y :: xs + ys
(*) Nil Nil = Nil
(*) (x :: xs) (y :: ys) = x * y :: xs * ys
fromInteger i = Vect 1 (fromInteger i)
I can work around this by creating my own vector type with a Num constraint (which isn't portable) or by overloading (+) in a namespace (which feels a little clunky):
namespace Vect
(+) : Num a => Vect n a -> Vect n a -> Vect n a
(+) xs ys = (+) <$> xs <*> ys
Is there a way to constrain interface implementations, or is there a better way to accomplish this, eg using dependent types?
In Idris, you'd do (almost) the same as haskell
Num a => Num (Vect n a) where
Like a number of things, this is in the book but not, apparently, in the docs.

Rewiring my own Vect but encountering issues

I was trying to re-implement the Vect data type to become more familiar with the dependent types. This is what I wrote:
data Vect : (len : Nat) -> (elem : Type) -> Type where
Nil : Vect Z elem
(::) : (x : elem) -> (xs : Vect len elem) -> Vect (S len) elem
append : Vect n elem -> Vect m elem -> Vect (n + m) elem
append [] y = y
append (x :: xs) y = x :: append xs y
I can define, for example Vect 4 Nat and others as well. But if I try append (Vect 4 Nat) (Vect 3 Nat) I get an error that I am not able to parse:
When checking an application of function Main.append:
Type mismatch between
Type (Type of Vect len elem)
and
Vect n elem (Expected type)
Clearly there is something wrong in the way I think about this.
Any suggestion?
Also when I try to create Vect 4 [1,2,3,4] I get an error:
When checking argument elem to type constructor Main.Vect:
Can't disambiguate since no name has a suitable type:
Prelude.List.::, Main.::, Prelude.Stream.::
So I guess I am quite lost ...
Your definition of Vect and append look fine to me, but it's how you're creating values that's the problem. You're mixing up the type constructor Vect with the data constructors Nil and ::. You should create values of type Vect len elem with calls to Nil and ::.
In particular, Vect 4 Nat is a type, but append expects a value of that type, like 1 :: 2 :: 3 :: 4 :: Nil (or [1,2,3,4] which is just syntactic sugar for the former).
And Vect 4 [1,2,3,4] isn't possible since [1,2,3,4] is a value not a Type

Idris Vect.fromList usage with generated list

I am trying to feel my way into dependent types. Based on the logic of the windowl function below, I want to return a list of vectors whose length depend on the size provided.
window : (n : Nat) -> List a -> List (Vect n a)
window size = map fromList loop
where
loop xs = case splitAt size xs of
(ys, []) => if length ys == size then [ys] else []
(ys, _) => ys :: loop (drop 1 xs)
windowl : Nat -> List a -> List (List a)
windowl size = loop
where
loop xs = case List.splitAt size xs of
(ys, []) => if length ys == size then [ys] else []
(ys, _) => ys :: loop (drop 1 xs)
When I attempt to load the function into Idris, I get the following:
When checking argument func to function Prelude.Functor.map:
Type mismatch between
(l : List elem) -> Vect (length l) elem (Type of fromList)
and
a1 -> List (Vect size a) (Expected type)
Specifically:
Type mismatch between
Vect (length v0) elem
and
List (Vect size a)
When reading the documentation on fromList I notice that it says
The length of the list should be statically known.
So I assume that the type error has to do with Idris not knowing that the length of the list is corresponding to the size specified.
I am stuck because I don't even know if it is something impossible I want to do or whether I can specify that the length of the list corresponds to the length of the vector that I want to produce.
Is there a way to do that?
Since in your case it is not possible to know the length statically, we need a function which can fail at run-time:
total
fromListOfLength : (n : Nat) -> (xs : List a) -> Maybe (Vect n a)
fromListOfLength n xs with (decEq (length xs) n)
fromListOfLength n xs | (Yes prf) = rewrite (sym prf) in Just (fromList xs)
fromListOfLength n xs | (No _) = Nothing
fromListOfLength converts a list of length n into a vector of length n or fails. Now let's combine it and windowl to get to window.
total
window : (n : Nat) -> List a -> List (Vect n a)
window n = catMaybes . map (fromListOfLength n) . windowl n
Observe that the window function's type is still an underspecification of what we are doing with the input list, because nothing prevents us from always returning the empty list (this could happen if fromListOfLength returned Nothing all the time).

Concatenation of two vectors - why are lengths not treated as commutative?

I'm playing around with Idris and I came across something which confuses me a little:
The following type checks:
conc : Vect n a -> Vect m a -> Vect (n+m) a
conc [] ys = ys
conc (x :: xs) ys = x :: (conc xs ys)
but this doesn't:
conc : Vect n a -> Vect m a -> Vect (m+n) a
conc [] ys = ys
conc (x :: xs) ys = x :: (conc xs ys)
with the following error:
When checking right hand side of conc with expected type
Vect (m + 0) a
Type mismatch between
Vect m a (Type of ys)
and
Vect (plus m 0) a (Expected type)
Specifically:
Type mismatch between
m
and
plus m 0
Equivalently xs++ys type checks but ys++xs doesn't even though they would both match the type definition of having length n+m.
This surprises me a little as addition is commutative. Is there anything I can do (perhaps with constraints?) to the function signature to get both xs++ys and ys++xs expressions type checking?
This is a common topic of confusion for beginners in Idris.
The problem in this case in second conc version:
conc : Vect n a -> Vect m a -> Vect (m+n) a
conc [] ys = ys
Idris cannot apply addition commutativity because Nat plus commutativity is a theorem from the compiler point of view. Here its type:
Idris> :t plusCommutative
plusCommutative : (left : Nat) -> (right : Nat) -> left + right = right + left
There're no general rules to tell you which theorem to choose and to apply. Of course, some heuristics can be made for some simple cases, like Nat commutativity. But this also can make difficult to understand some other cases.
The other thing you need to consider is definition of plus:
Idris> :printdef plus
plus : Nat -> Nat -> Nat
plus 0 right = right
plus (S left) right = S (plus left right)
Function plus defined in a such way that is does pattern matching on its first argument. Idris actually can perform this pattern matching in types. So in first version, where
conc : Vect n a -> Vect m a -> Vect (n+m) a
conc [] ys = ys
you have (0 + m) in type and Idris can replace plus 0 m with m and everything typechecks. plus m 0 would work if you define your + operator by pattern matching on second argument. For example, this compiles:
infixl 4 +.
(+.) : Nat -> Nat -> Nat
n +. Z = n
n +. (S m) = S (n +. m)
conc : Vect n a -> Vect m a -> Vect (m +. n) a
conc [] ys = ys
conc (x :: xs) ys = x :: (conc xs ys)
But it's obvious that writing new operator for every case you need is horrible. So to make your second version compilable you should use rewrite ... in syntax in Idris. You need next theorems:
Idris> :t plusZeroRightNeutral
plusZeroRightNeutral : (left : Nat) -> left + 0 = left
Idris> :t plusSuccRightSucc
plusSuccRightSucc : (left : Nat) -> (right : Nat) -> S (left + right) = left + S right
Idris> :t sym
sym : (left = right) -> right = left
And here is version which compiles:
conc : Vect n a -> Vect m a -> Vect (m + n) a
conc {m} [] ys = rewrite plusZeroRightNeutral m in ys
conc {n=S k} {m} (x :: xs) ys = rewrite (sym $ plusSuccRightSucc m k) in x :: (conc xs ys)
I'm not explaining here how rewriting and theorem proving works here. This is a topic of another question if you don't understand something. But you can read about that in tutorial (or wait for The Book release :) .

What does the error message "Universe inconsistency" mean when working with higher-rank types?

Given the following Idris code:
import Data.Vect
import Data.Fin
%default total
fins : Vect n (Fin n)
fins {n = Z} = []
fins {n = S n} = FZ :: map FS fins
Permutation : Nat -> Type
Permutation n = {a : Type} -> Vect n a -> Vect n a
permutations : {n : Nat} -> Vect (fact n) (Permutation n)
permutations {n = Z} = [id]
permutations {n = S n} =
rewrite multCommutative (S n) (fact n) in
concat $ map inserts (permutations {n = n})
where
inserts : Permutation k -> Vect (S k) (Permutation (S k))
inserts pi = map (\i => \(x :: xs) => insertAt i x . pi $ xs) fins
I am getting the following error message from Idris 0.9.16 (and no further details):
Type checking .\Permutations.idr
Permutations.idr:15:14:Universe inconsistency
However, by changing it just so slightly, so that the second clause of permutations becomes
permutations {n = S n} =
rewrite multCommutative (S n) (fact n) in
concat . map inserts $ permutations {n = n}
then it suddenly typechecks.
Is there some special magic going on inside Idris perhaps in the handling of ($) and (.), similar to what GHC does so that they work in the presence of higher-rank types?
As of Idris 0.10.2, my original code (using concat $ map inserts (permutations {n = n}) in the definition of permutations) typechecks without hiccup.