Error Processing Input for GCP ML Engine Prediction - tensorflow

I have a TensorFlow model on GCP ML Engine, however I have a problem with the JSON string below:
from googleapiclient import discovery
from oauth2client.client import GoogleCredentials
import json
credentials = GoogleCredentials.get_application_default()
api = discovery.build('ml', 'v1', credentials=credentials,
discoveryServiceUrl='https://storage.googleapis.com/cloud-ml/discovery/ml_v1_discovery.json')
request_data = {'instances':
[{
'inputs':{
'clump_thickness': 2,
'size_uniformity': 1,
'shape_uniformity': 1,
'marginal_adhesion': 1,
'epithelial_size': 2,
'bland_chromatin': 1,
'bare_nucleoli': 2,
'normal_nucleoli': 1,
'mitoses': 1
}
}]
}
parent = 'projects/%s/models/%s/versions/%s' % (PROJECT,
'breastCancer_optimized_06152018_2_2_a', 'v1')
response = api.projects().predict(body=request_data, name=parent).execute()
print(response)
I get the following error:
{'error': "Prediction failed: Error processing input: Expected string, got {u'epithelial_size': 2, u'marginal_adhesion': 1, u'clump_thickness': 2, u'size_uniformity': 1, u'shape_uniformity': 1, u'normal_nucleoli': 1, u'mitoses': 1, u'bland_chromatin': 1, u'bare_nucleoli': 2} of type 'dict' instead."}
I can't seem to format request_data properly. Does anyone see what is wrong?
original serving function:
clump_thickness = tf.feature_column.numeric_column("clump_thickness");
size_uniformity = tf.feature_column.numeric_column("size_uniformity");
shape_uniformity = tf.feature_column.numeric_column("shape_uniformity");
marginal_adhesion = tf.feature_column.numeric_column("marginal_adhesion");
epithelial_size = tf.feature_column.numeric_column("epithelial_size");
bare_nucleoli = tf.feature_column.numeric_column("bare_nucleoli");
bland_chromatin = tf.feature_column.numeric_column("bland_chromatin");
normal_nucleoli = tf.feature_column.numeric_column("normal_nucleoli");
mitoses = tf.feature_column.numeric_column("mitoses");
feature_columns = [clump_thickness, size_uniformity, shape_uniformity, marginal_adhesion, epithelial_size,
bare_nucleoli, bland_chromatin, normal_nucleoli, mitoses];
feature_spec = tf.feature_column.make_parse_example_spec(feature_columns);
export_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec);
estimator.export_savedmodel(output_dir, export_input_fn, as_text=False)
Then I tried:
def serving_input_fn():
feature_placeholders = {
'clump_thickness' : tf.placeholder(tf.float32, [None]),
'size_uniformity' : tf.placeholder(tf.float32, [None]),
'shape_uniformity' : tf.placeholder(tf.float32, [None]),
'marginal_adhesion' : tf.placeholder(tf.float32, [None]),
'epithelial_size' : tf.placeholder(tf.float32, [None]),
'bare_nucleoli' : tf.placeholder(tf.float32, [None]),
'bland_chromatin' : tf.placeholder(tf.float32, [None]),
'normal_nucleoli' : tf.placeholder(tf.float32, [None]),
'mitoses' : tf.placeholder(tf.float32, [None]),
}
features = feature_placeholders # no transformation needed
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
And in the train_and_eval function:
estimator.export_savedmodel(output_dir, serving_input_fn, as_text=False)
But now I get the following error:
{'error': "Prediction failed: Expected tensor name: inputs, got tensor name: [u'epithelial_size', u'marginal_adhesion', u'clump_thickness', u'size_uniformity', u'shape_uniformity', u'normal_nucleoli', u'mitoses', u'bland_chromatin', u'bare_nucleoli']."}
The estimator.export_savedmodel appears to create a model which requires a tensor input(in the request_data line).
When I use the model created with either serving function the following works fine:
predict_fn = tf.contrib.predictor.from_saved_model("gs://test-
203900/breastCancer_optimized_06182018/9/1529432417")
# Test inputs represented by Pandas DataFrame.
inputs = pd.DataFrame({
'clump_thickness': [2,5,4],
'size_uniformity': [1,10,8],
'shape_uniformity': [1,10,6],
'marginal_adhesion': [1,3,4],
'epithelial_size': [2,7,3],
'bland_chromatin': [1,3,4],
'bare_nucleoli': [2,8,10],
'normal_nucleoli': [1,10,6],
'mitoses': [1,2,1],
})
# Convert input data into serialized Example strings.
examples = []
for index, row in inputs.iterrows():
feature = {}
for col, value in row.iteritems():
feature[col] =
tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
example = tf.train.Example(
features=tf.train.Features(
feature=feature
)
)
examples.append(example.SerializeToString())
# Make predictions.
predictions = predict_fn({'inputs': examples})

It depends on what your serving input function is. It appears from the error message that 'inputs' needs to be a string (maybe comma-separated?)
Try this:
saved_model_cli show --dir $MODEL_LOCATION --tag_set serve --signature_def serving_default
It will tell you what your serving input function is set to.
I suspect that what you want is for your serving input function to be:
def serving_input_fn():
feature_placeholders = {
'size_uniformity' : tf.placeholder(tf.float32, [None]),
'shape_uniformity' : tf.placeholder(tf.float32, [None])
}
features = feature_placeholders # no transformation needed
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
and for your input format to be:
request_data = {'instances':
[
{
'size_uniformity': 1,
'shape_uniformity': 1
}
]
}

Related

parse_single_sequence_example says number of values != expected

I'm having a problem deserializing a SequenceExample, using tensorflow 2.4.1. I get this error:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Name: <unknown>, Key: Names, Index: 0. Number of values != expected. values size: 2 but output shape: [] [Op:ParseSequenceExampleV2]
When I run this code:
import tensorflow as tf
feature_list = tf.train.FeatureList(feature=[
tf.train.Feature(bytes_list=tf.train.BytesList(value=[b'foo', b'bar']))
])
feature_lists = tf.train.FeatureLists(feature_list={ 'Names': feature_list })
sequence_example = tf.train.SequenceExample(context=None, feature_lists=feature_lists)
sequence_features = {
'Names': tf.io.FixedLenSequenceFeature([], dtype=tf.string),
}
_, sequence_data = tf.io.parse_single_sequence_example(
serialized=sequence_example.SerializeToString(),
context_features=None,
sequence_features=sequence_features)
What am I doing wrong?

Performing inference with a BERT (TF 1.x) saved model

I'm stuck on one line of code and have been stalled on a project all weekend as a result.
I am working on a project that uses BERT for sentence classification. I have successfully trained the model, and I can test the results using the example code from run_classifier.py.
I can export the model using this example code (which has been reposted repeatedly, so I believe that it's right for this model):
def export(self):
def serving_input_fn():
label_ids = tf.placeholder(tf.int32, [None], name='label_ids')
input_ids = tf.placeholder(tf.int32, [None, self.max_seq_length], name='input_ids')
input_mask = tf.placeholder(tf.int32, [None, self.max_seq_length], name='input_mask')
segment_ids = tf.placeholder(tf.int32, [None, self.max_seq_length], name='segment_ids')
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
'label_ids': label_ids, 'input_ids': input_ids,
'input_mask': input_mask, 'segment_ids': segment_ids})()
return input_fn
self.estimator._export_to_tpu = False
self.estimator.export_savedmodel(self.output_dir, serving_input_fn)
I can also load the exported estimator (where the export function saves the exported model into a subdirectory labeled with a timestamp):
predict_fn = predictor.from_saved_model(self.output_dir + timestamp_number)
However, for the life of me, I cannot figure out what to provide to predict_fn as input for inference. Here is my best code at the moment:
def predict(self):
input = 'Test input'
guid = 'predict-0'
text_a = tokenization.convert_to_unicode(input)
label = self.label_list[0]
examples = [InputExample(guid=guid, text_a=text_a, text_b=None, label=label)]
features = convert_examples_to_features(examples, self.label_list,
self.max_seq_length, self.tokenizer)
predict_input_fn = input_fn_builder(features, self.max_seq_length, False)
predict_fn = predictor.from_saved_model(self.output_dir + timestamp_number)
result = predict_fn(predict_input_fn) # this generates an error
print(result)
It doesn't seem to matter what I provide to predict_fn: the examples array, the features array, the predict_input_fn function. Clearly, predict_fn wants a dictionary of some type - but every single thing that I've tried generates an exception due to a tensor mismatch or other errors that generally mean: bad input.
I presumed that the from_saved_model function wants the same sort of input as the model test function - apparently, that's not the case.
It seems that lots of people have asked this very question - "how do I use an exported BERT TensorFlow model for inference?" - and have gotten no answers:
Thread #1
Thread #2
Thread #3
Thread #4
Any help? Thanks in advance.
Thank you for this post. Your serving_input_fn was the piece I was missing! Your predict function needs to be changed to feed the features dict directly, rather than use the predict_input_fn:
def predict(sentences):
labels = [0, 1]
input_examples = [
run_classifier.InputExample(
guid="",
text_a = x,
text_b = None,
label = 0
) for x in sentences] # here, "" is just a dummy label
input_features = run_classifier.convert_examples_to_features(
input_examples, labels, MAX_SEQ_LEN, tokenizer
)
# this is where pred_input_fn is replaced
all_input_ids = []
all_input_mask = []
all_segment_ids = []
all_label_ids = []
for feature in input_features:
all_input_ids.append(feature.input_ids)
all_input_mask.append(feature.input_mask)
all_segment_ids.append(feature.segment_ids)
all_label_ids.append(feature.label_id)
pred_dict = {
'input_ids': all_input_ids,
'input_mask': all_input_mask,
'segment_ids': all_segment_ids,
'label_ids': all_label_ids
}
predict_fn = predictor.from_saved_model('../testing/1589418540')
result = predict_fn(pred_dict)
print(result)
pred_sentences = [
"That movie was absolutely awful",
"The acting was a bit lacking",
"The film was creative and surprising",
"Absolutely fantastic!",
]
predict(pred_sentences)
{'probabilities': array([[-0.3579178 , -1.2010787 ],
[-0.36648935, -1.1814401 ],
[-0.30407643, -1.3386648 ],
[-0.45970002, -0.9982413 ],
[-0.36113673, -1.1936386 ],
[-0.36672896, -1.1808994 ]], dtype=float32), 'labels': array([0, 0, 0, 0, 0, 0])}
However, the probabilities returned for sentences in pred_sentences do not match the probabilities I get use estimator.predict(predict_input_fn) where estimator is the fine-tuned model being used within the same (python) session. For example, [-0.27276006, -1.4324446 ] using estimator vs [-0.26713806, -1.4505868 ] using predictor.

How can i use 38 classes instead of 1000 in model.predict decode predictions

i am founding an error in plant disease detection using resnet50 deep learning model every time it raises an error message in decode_predictions
error
expects a batch of predictions (i.e. a 2D array of shape (samples, 1000)). Found array with shape: (1, 38)"
enter code here
model = ResNet50(weights='imagenet',include_top=False,classes=38)
try:
model = load_model('/content/drive/My
Drive/color/checkpoints/ResNet50_model_weights.h5')
print("model loaded")
except:
print("model not loaded")
img_path = '/content/drive/My Drive/color/test/0/appleblackrot188.jpg'
img = image.load_img(img_path, target_size=(300, 300))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
print('Predicted:', decode_predictions(preds,top=3)[0])
You can try using the preprocesing function:
import tensorflow as tf
# Using the keras wrapper on tensorflow (it must be the same using just keras).
IMAGE = [] # From image source, i did it from the camera.
toPred = tf.keras.applications.resnet50.preprocess_input(np.expand_dims(tf.keras.preprocessing.image.img_to_array(IMAGE), axis=0))
Maybe that can help :)
decode_predictions works only for ImageNet (no. of classes = 1000). For these 38 classes of plants, you have to write your own decode predictions based on the ground truth label you've assigned for each plant.
First, you need an index JSON file and create a new decode_predictions function.
For example
This HAM10000 that has 7 classes and you need to split to each folder like this
then make an index JSON file like this
{
"0" : [
"AKIEC",
"akiec"
],
"1" : [
"BCC",
"bcc"
],
"2" : [
"BKL",
"bkl"
],
"3" : [
"DF",
"df"
],
"4" : [
"MEL",
"mel"
],
"5" : [
"NV",
"nv"
],
"6" : [
"VASC",
"vasc"
]
}
Then try this code
def decode_predictions(preds, top=4, class_list_path='/content/SKIN_DATA/HAM10000_index.json'):
if len(preds.shape) != 2 or preds.shape[1] != 7: # your classes number
raise ValueError('`decode_predictions` expects '
'a batch of predictions '
'(i.e. a 2D array of shape (samples, 1000)). '
'Found array with shape: ' + str(preds.shape))
index_list = json.load(open(class_list_path))
results = []
for pred in preds:
top_indices = pred.argsort()[-top:][::-1]
result = [tuple(index_list[str(i)]) + (pred[i],) for i in top_indices]
result.sort(key=lambda x: x[2], reverse=True)
results.append(result)
return results

AttributeError: 'list' object has no attribute 'model_dir'

I'm running a wide_deep.py script for linear regression in tensorflow.
I have cloned the models directory also as a part of process.
But i'm getting a error like AttributeError: 'list' object has no attribute 'model_dir'.
If I hard code this particular variable, I m getting other errors as AttributeError: 'list' object has no attribute 'data_dir' and so on .
Code:
"""Example code for TensorFlow Wide & Deep Tutorial using tf.estimator API."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import shutil
from absl import app as absl_app
from absl import flags
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.misc import model_helpers
_CSV_COLUMNS = [
'age', 'workclass', 'fnlwgt', 'education', 'education_num',
'marital_status', 'occupation', 'relationship', 'race', 'gender',
'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
'income_bracket'
]
_CSV_COLUMN_DEFAULTS = [[0], [''], [0], [''], [0], [''], [''], [''], [''], [''],
[0], [0], [0], [''], ['']]
_NUM_EXAMPLES = {
'train': 32561,
'validation': 16281,
}
LOSS_PREFIX = {'wide': 'linear/', 'deep': 'dnn/'}
def define_wide_deep_flags():
"""Add supervised learning flags, as well as wide-deep model type."""
flags_core.define_base()
flags.adopt_module_key_flags(flags_core)
flags.DEFINE_enum(
name="model_type", short_name="mt", default="wide_deep",
enum_values=['wide', 'deep', 'wide_deep'],
help="Select model topology.")
flags_core.set_defaults(data_dir='/tmp/census_data',
model_dir='/tmp/census_model',
train_epochs=40,
epochs_between_evals=2,
batch_size=40)
def build_model_columns():
"""Builds a set of wide and deep feature columns."""
# Continuous columns
age = tf.feature_column.numeric_column('age')
education_num = tf.feature_column.numeric_column('education_num')
capital_gain = tf.feature_column.numeric_column('capital_gain')
capital_loss = tf.feature_column.numeric_column('capital_loss')
hours_per_week = tf.feature_column.numeric_column('hours_per_week')
education = tf.feature_column.categorical_column_with_vocabulary_list(
'education', [
'Bachelors', 'HS-grad', '11th', 'Masters', '9th', 'Some-college',
'Assoc-acdm', 'Assoc-voc', '7th-8th', 'Doctorate', 'Prof-school',
'5th-6th', '10th', '1st-4th', 'Preschool', '12th'])
marital_status = tf.feature_column.categorical_column_with_vocabulary_list(
'marital_status', [
'Married-civ-spouse', 'Divorced', 'Married-spouse-absent',
'Never-married', 'Separated', 'Married-AF-spouse', 'Widowed'])
relationship = tf.feature_column.categorical_column_with_vocabulary_list(
'relationship', [
'Husband', 'Not-in-family', 'Wife', 'Own-child', 'Unmarried',
'Other-relative'])
workclass = tf.feature_column.categorical_column_with_vocabulary_list(
'workclass', [
'Self-emp-not-inc', 'Private', 'State-gov', 'Federal-gov',
'Local-gov', '?', 'Self-emp-inc', 'Without-pay', 'Never-worked'])
# To show an example of hashing:
occupation = tf.feature_column.categorical_column_with_hash_bucket(
'occupation', hash_bucket_size=1000)
# Transformations.
age_buckets = tf.feature_column.bucketized_column(
age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
# Wide columns and deep columns.
base_columns = [
education, marital_status, relationship, workclass, occupation,
age_buckets,
]
crossed_columns = [
tf.feature_column.crossed_column(
['education', 'occupation'], hash_bucket_size=1000),
tf.feature_column.crossed_column(
[age_buckets, 'education', 'occupation'], hash_bucket_size=1000),
]
wide_columns = base_columns + crossed_columns
deep_columns = [
age,
education_num,
capital_gain,
capital_loss,
hours_per_week,
tf.feature_column.indicator_column(workclass),
tf.feature_column.indicator_column(education),
tf.feature_column.indicator_column(marital_status),
tf.feature_column.indicator_column(relationship),
# To show an example of embedding
tf.feature_column.embedding_column(occupation, dimension=8),
]
return wide_columns, deep_columns
def build_estimator(model_dir, model_type):
"""Build an estimator appropriate for the given model type."""
wide_columns, deep_columns = build_model_columns()
hidden_units = [100, 75, 50, 25]
# Create a tf.estimator.RunConfig to ensure the model is run on CPU, which
# trains faster than GPU for this model.
run_config = tf.estimator.RunConfig().replace(
session_config=tf.ConfigProto(device_count={'GPU': 0}))
if model_type == 'wide':
return tf.estimator.LinearClassifier(
model_dir=model_dir,
feature_columns=wide_columns,
config=run_config)
elif model_type == 'deep':
return tf.estimator.DNNClassifier(
model_dir=model_dir,
feature_columns=deep_columns,
hidden_units=hidden_units,
config=run_config)
else:
return tf.estimator.DNNLinearCombinedClassifier(
model_dir=model_dir,
linear_feature_columns=wide_columns,
dnn_feature_columns=deep_columns,
dnn_hidden_units=hidden_units,
config=run_config)
def input_fn(data_file, num_epochs, shuffle, batch_size):
"""Generate an input function for the Estimator."""
assert tf.gfile.Exists(data_file), (
'%s not found. Please make sure you have run data_download.py and '
'set the --data_dir argument to the correct path.' % data_file)
def parse_csv(value):
print('Parsing', data_file)
columns = tf.decode_csv(value, record_defaults=_CSV_COLUMN_DEFAULTS)
features = dict(zip(_CSV_COLUMNS, columns))
labels = features.pop('income_bracket')
return features, tf.equal(labels, '>50K')
# Extract lines from input files using the Dataset API.
dataset = tf.data.TextLineDataset(data_file)
if shuffle:
dataset = dataset.shuffle(buffer_size=_NUM_EXAMPLES['train'])
dataset = dataset.map(parse_csv, num_parallel_calls=5)
# We call repeat after shuffling, rather than before, to prevent separate
# epochs from blending together.
dataset = dataset.repeat(num_epochs)
dataset = dataset.batch(batch_size)
return dataset
def export_model(model, model_type, export_dir):
"""Export to SavedModel format.
Args:
model: Estimator object
model_type: string indicating model type. "wide", "deep" or "wide_deep"
export_dir: directory to export the model.
"""
wide_columns, deep_columns = build_model_columns()
if model_type == 'wide':
columns = wide_columns
elif model_type == 'deep':
columns = deep_columns
else:
columns = wide_columns + deep_columns
feature_spec = tf.feature_column.make_parse_example_spec(columns)
example_input_fn = (
tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec))
model.export_savedmodel(export_dir, example_input_fn)
def run_wide_deep(flags_obj):
"""Run Wide-Deep training and eval loop.
Args:
flags_obj: An object containing parsed flag values.
"""
# Clean up the model directory if present
shutil.rmtree(flags_obj.model_dir, ignore_errors=True)
model = build_estimator(flags_obj.model_dir, flags_obj.model_type)
train_file = os.path.join(flags_obj.data_dir, 'adult.data')
test_file = os.path.join(flags_obj.data_dir, 'adult.test')
# Train and evaluate the model every `flags.epochs_between_evals` epochs.
def train_input_fn():
return input_fn(
train_file, flags_obj.epochs_between_evals, True, flags_obj.batch_size)
def eval_input_fn():
return input_fn(test_file, 1, False, flags_obj.batch_size)
loss_prefix = LOSS_PREFIX.get(flags_obj.model_type, '')
train_hooks = hooks_helper.get_train_hooks(
flags_obj.hooks, batch_size=flags_obj.batch_size,
tensors_to_log={'average_loss': loss_prefix + 'head/truediv',
'loss': loss_prefix + 'head/weighted_loss/Sum'})
# Train and evaluate the model every `flags.epochs_between_evals` epochs.
for n in range(flags_obj.train_epochs // flags_obj.epochs_between_evals):
model.train(input_fn=train_input_fn, hooks=train_hooks)
results = model.evaluate(input_fn=eval_input_fn)
# Display evaluation metrics
print('Results at epoch', (n + 1) * flags_obj.epochs_between_evals)
print('-' * 60)
for key in sorted(results):
print('%s: %s' % (key, results[key]))
if model_helpers.past_stop_threshold(
flags_obj.stop_threshold, results['accuracy']):
break
# Export the model
if flags_obj.export_dir is not None:
export_model(model, flags_obj.model_type, flags_obj.export_dir)
def main(_):
run_wide_deep(flags.FLAGS)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
define_wide_deep_flags()
absl_app.run(main)
Hunter, I tried to run without hardcoding but still faced issues with attributes , so I tried to hard code to avoid this .
But, The issue is resolved now.
I cloned the directory again and instead of copying the wide_deep.py to another directory and run from there(which I was doing before), I ran directly from the same directory and now it is working fine.

gcloud jobs submit prediction 'can't decode json' with --data-format=TF_RECORD

I pushed up some test data to gcloud for prediction as a binary tfrecord-file. Running my script I got the error ('No JSON object could be decoded', 162). What do you think I am doing wrong?
To push a prediction job to gcloud, i use this script:
REGION=us-east1
MODEL_NAME=mymodel
VERSION=v_hopt_22
INPUT_PATH=gs://mydb/test-data.tfr
OUTPUT_PATH=gs://mydb/prediction.tfr
JOB_NAME=pred_${MODEL_NAME}_${VERSION}_b
args=" --model "$MODEL_NAME
args+=" --version "$VERSION
args+=" --data-format=TF_RECORD"
args+=" --input-paths "$INPUT_PATH
args+=" --output-path "$OUTPUT_PATH
args+=" --region "$REGION
gcloud ml-engine jobs submit prediction $JOB_NAME $args
test-data.tfr has been generated from a numpy array, as so:
import numpy as np
filename = './Datasets/test-data.npz'
data = np.load(filename)
features = data['X'] # features[channel, example, feature]
np_features = np.swapaxes(features, 0, 1) # features[example, channel, feature]
import tensorflow as tf
import nnscoring.data as D
def floats_feature(arr):
return tf.train.Feature(float_list=tf.train.FloatList(value=arr.flatten().tolist()))
writer = tf.python_io.TFRecordWriter("./Datasets/test-data.tfr")
for i, np_example in enumerate(np_features):
if i%1000==0: print(i)
tf_feature = {
ch: floats_feature(x)
for ch, x in zip(D.channels, np_example)
}
tf_features = tf.train.Features(feature=tf_feature)
tf_example = tf.train.Example(features=tf_features)
writer.write(tf_example.SerializeToString())
writer.close()
Update (following yxshi):
I define the following serving function
def tfrecord_serving_input_fn():
import tensorflow as tf
seq_length = int(dt*sr)
examples = tf.placeholder(tf.string, shape=())
feat_map = {
channel: tf.FixedLenSequenceFeature(shape=(seq_length,),
dtype=tf.float32, allow_missing=True)
for channel in channels
}
parsed = tf.parse_single_example(examples, features=feat_map)
features = {
channel: tf.expand_dims(tensor, -1)
for channel, tensor in parsed.iteritems()
}
from collections import namedtuple
InputFnOps = namedtuple("InputFnOps", "features labels receiver_tensors")
tf.contrib.learn.utils.input_fn_utils.InputFnOps = InputFnOps
return InputFnOps(features=features, labels=None, receiver_tensors=examples)
# InputFnOps = tf.contrib.learn.utils.input_fn_utils.InputFnOps
# return InputFnOps(features, None, parsed)
# Error: InputFnOps has no attribute receiver_tensors
.., which I pass to generate_experiment_fn as so:
export_strategies = [
saved_model_export_utils.make_export_strategy(
tfrecord_serving_input_fn,
exports_to_keep = 1,
default_output_alternative_key = None,
)]
gen_exp_fn = generate_experiment_fn(
train_steps_per_iteration = args.train_steps_per_iteration,
train_steps = args.train_steps,
export_strategies = export_strategies
)
(aside: note the dirty patch of InputFnOps)
It looks like the input is not correctly specified in the inference graph. To use tf_record as input data format, your inference graph must accept strings as the input placeholder. In your case, you should have something like below in your inference code:
examples = tf.placeholder(tf.string, name='input', shape=(None,))
with tf.name_scope('inputs'):
feature_map = {
ch: floats_feature(x)
for ch, x in zip(D.channels, np_example)
}
parsed = tf.parse_example(examples, features=feature_map)
f1 = parsed['feature_name_1']
f2 = parsed['feature_name_2']
...
A close example is here:
https://github.com/GoogleCloudPlatform/cloudml-samples/blob/master/flowers/trainer/model.py#L253
Hope it helps.