split a large csv file according to some NaN values - pandas

There is a huge file, almost reaching 10 million rows, which I would like to split based on the values of a given column. One represents internal measurements (inside a house) and the other one is the external data (outside). This codes takes way too long to split, any ideas?
fext = open('external.csv', 'a')
fint = open('internal.csv', 'a')
for df in pd.read_csv('todo.csv', parse_dates=['Measured At'],
low_memory=False, chunksize=500000):
dfExt = df[df['Temperatura Exterior'].notnull()]
dfInt = df[df['Temperatura Exterior'].isnull()]
dfExt.to_csv(fext,header=False)
dfInt.to_csv(fint,header=False)
fext.close();fint.close()

Related

Pandas.dropna method can't delete Nan value rows(or columns)

I now have some data, it's may contain null values
I want to delete it's null value (a whole row or a whole column)
How can I deal with the comparison?
Here is my data
https://reurl.cc/5lONv6
it will have some null values ​​in the time series data
following is my code
c=pd.read_csv('./in/historical_01A190.txt',error_bad_lines=False)
c.dropna(axis=0,how='any',inplace=True)
c.dropna(axis=1,how='any',inplace=True)
c.to_csv('./out/historical_01A190.txt',index=False)
but it's didn't work
anyone can help me?
Okay, first of all, your data isn't saved as a csv. It's saved as a tab-separated file.
So you need to open it using pd.read_table
>>> c=pd.read_table('./data.txt',error_bad_lines=False,sep='\t')
Second, your data is full of nans -- if you use dropna on either rows or columns, you end up with just one row or column (dates) left. But using the correct opener on your file, the dropna and to_csv functions work.
If you don't assing the variable then it will only create a view which is not stored in memory.
c = c.dropna(axis=0,how='any',inplace=True)
c = c.dropna(axis=1,how='any',inplace=True)
c = c.to_csv('./out/historical_01A190.txt',index=False)
Try this.

Preprocess Data for Tensorflow 2.0

I have a .csv File that has hundreds of thousands of lines. The information was collected in order by the user.
For example, one user's inputs may range 20-400 rows, and the corresponding target is a single row where the users first input row started.
inputs | Targets
0, 7
1
2
3
4
So one set of targets per x amount of input rows.
Some of my columns contain '-' I feel like this will mess up my model when trying to train, considering it isn't a float or int what I should do?
Also, Should I shuffle my data if it is chunked like this?

Performing calculations on multiple columns in dataframe and create new columns

I'm trying to perform calculations based on the entries in a pandas dataframe. The dataframe looks something like this:
and it contains 1466 rows. I'll have to run similar calculations on other dfs with more rows later.
What I'm trying to do, is calculate something like mag='(U-V)/('R-I)' (but ignoring any values that are -999), put that in a new column, and then z_pred=10**((mag-c)m) in a new column (mag, c and m are just hard-coded variables). I have other columns I need to add too, but I figure that'll just be an extension of the same method.
I started out by trying
for i in range(1):
current = qso[:]
mag = (U-V)/(R-I)
name = current['NED']
z_pred = 10**((mag - c)/m)
z_meas = current['z']
but I got either a Series for z, which I couldn't operate on, or various type errors when I tried to print the values or write them to a file.
I found this question which gave me a start, but I can't see how to apply it to multiple calculations, as in my situation.
How can I achieve this?
Conditionally adding calculated columns row wise are usually performed with numpy's np.where;
df['mag'] = np.where(~df[['U', 'V', 'R', 'I']].eq(-999).any(1), (df.U - df.V) / (df.R - df.I), -999)
Note; assuming here that when any of the columns contain '-999' it will not be calculated and a '-999' is returned.

Organizing data (pandas dataframe)

I have a data in the following form:
product/productId B000EVS4TY
1 product/title Arrowhead Mills Cookie Mix, Chocolate Chip, 1...
2 product/price unknown
3 review/userId A2SRVDDDOQ8QJL
4 review/profileName MJ23447
5 review/helpfulness 2/4
6 review/score 4.0
7 review/time 1206576000
8 review/summary Delicious cookie mix
9 review/text I thought it was funny that I bought this pro...
10 product/productId B0000DF3IX
11 product/title Paprika Hungarian Sweet
12 product/price unknown
13 review/userId A244MHL2UN2EYL
14 review/profileName P. J. Whiting "book cook"
15 review/helpfulness 0/0
16 review/score 5.0
17 review/time 1127088000
I want to convert it to a dataframe such that the entries in the 1st column
product/productId
product/title
product/price
review/userId
review/profileName
review/helpfulness
review/score
review/time
review/summary
review/text
are the column headers with the values arranged corresponding to each header in the table.
I still had a tiny doubt about your file, but since both my suggestions are quite similar, I will try to address both the scenarios you might have.
In case your file doesn't actually have the line numbers inside of it, this should do it:
filepath = "./untitled.txt" # you need to change this to your file path
column_separator="\s{3,}" # we'll use a regex, I explain some caveats of this below...
# engine='python' surpresses a warning by pandas
# header=None is that so all lines are considered 'data'
df = pd.read_csv(filepath, sep=column_separator, engine="python", header=None)
df = df.set_index(0) # this takes column '0' and uses it as the dataframe index
df = df.T # this makes the data look like you were asking (goes from multiple rows+1column to multiple columns+1 row)
df = df.reset_index(drop=True) # this is just so the first row starts at index '0' instead of '1'
# you could just do the last 3 lines with:
# df = df.set_index(0).T.reset_index(drop=True)
If you do have line numbers, then we just need to do some little adjustments
filepath = "./untitled1.txt"
column_separator="\s{3,}"
df = pd.read_csv(filepath, sep=column_separator, engine="python", header=None, index_col=0)
df.set_index(1).T.reset_index(drop=True) #I did all the 3 steps in 1 line, for brevity
In this last case, I would advise you change it in order to have line numbers in all of them (in the example you provided, the numbering starts at the second line, this might be an option about how you handle headers when exporting the data in whatever tool you might be using
Regarding the regex, the caveat is that "\s{3,}" looks for any block of 3 consecutive whitespaces or more to determine the column separator. The problem here is that we'll depend a bit on the data to find the columns. For instance, if in any of the values just so happens to appear 3 consecutive spaces, pandas will raise an exception, since the line will have one more column than the others. One solution to this could be increasing it to any other 'appropriate' number, but then we still depend on the data (for instance, with more than 3, in your example, "review/text" would have enough spaces for the two columns to be identified)
edit after realising what you meant by "stacked"
Whatever "line-number scenario" you have, you'll need to make sure you always have the same number of columns for all registers and reshape the continuous dataframe with something similar to this:
number_of_columns = 10 # you'll need to make sure all "registers" do have the same number of columns otherwise this will break
new_shape = (-1,number_of_columns) # this tuple will mean "whatever number of lines", by 10 columns
final_df = pd.DataFrame(data = df.values.reshape(new_shape)
,columns=df.columns.tolist()[:-10])
Again, take notice of making sure that all lines have the same number of columns (for instance, a file with just the data you provided, assuming 10 columns, wouldn't work). Also, this solution assumes all columns will have the same name.

store matrix data in SQLite for fast retrieval in R

I have 48 matrices of dimensions 1,000 rows and 300,000 columns where each column has a respective ID, and each row is a measurement at one time point. Each of the 48 matrices is of the same dimension and their column IDs are all the same.
The way I have the matrices stored now is as RData objects and also as text files. I guess for SQL I'd have to transpose and store by ID, and in such case now the matrix would be of dimensions 300,000 rows and 1,000 columns.
I guess if I transpose it a small version of the data would look like this:
id1 1.5 3.4 10 8.6 .... 10 (with 1,000 columns, and 30,0000 rows now)
I want to store them in a way such that I can use R to retrieve a few of the rows (~ 5 to 100 each time).
The general strategy I have in mind is as follows:
(1) Create a database in sqlite3 using R that I will use to store the matrices (in different tables)
For file 1 to 48 (each file is of dim 1,000 rows and 300,000 columns):
(2) Read in file into R
(3) Store the file as a matrix in R
(4) Transpose the matrix (now its of dimensions 300,000 rows and 1,000 columns). Each row now is the unique id in the table in sqlite.
(5) Dump/write the matrix into the sqlite3 database created in (1) (dump it into a new table probably?)
Steps 1-5 are to create the DB.
Next, I need step 6 to read-in the database:
(6) Read some rows (at most 100 or so at a time) into R as a (sub)matrix.
A simple example code doing steps 1-6 would be best.
Some Thoughts:
I have used SQL before but it was mostly to store tabular data where each column had a name, in this case each column is just one point of the data matrix, I guess I could just name it col1 ... to col1000? or there are better tricks?
If I look at: http://sandymuspratt.blogspot.com/2012/11/r-and-sqlite-part-1.html they show this example:
dbSendQuery(conn = db,
"CREATE TABLE School
(SchID INTEGER,
Location TEXT,
Authority TEXT,
SchSize TEXT)")
But in my case this would look like:
dbSendQuery(conn = db,
"CREATE TABLE mymatrixdata
(myid TEXT,
col1 float,
col2 float,
.... etc.....
col1000 float)")
I.e., I have to type in col1 to ... col1000 manually, that doesn't sound very smart. This is where I am mostly stuck. Some code snippet would help me.
Then, I need to dump the text files into the SQLite database? Again, unsure how to do this from R.
Seems I could do something like this:
setwd(<directory where to save the database>)
db <- dbConnect(SQLite(), dbname="myDBname")
mymatrix.df = read.table(<full name to my text file containing one of the matrices>)
mymatrix = as.matrix(mymatrix.df)
Here I need to now the coe on how to dump this into the database...
Finally,
How to fast retrieve the values (without having to read the entire matrices each time) for some of the rows (by ID) using R?
From the tutorial it'd look like this:
sqldf("SELECT id1,id2,id30 FROM mymatrixdata", dbname = "Test2.sqlite")
But it the id1,id2,id30 are hardcoded in the code and I need to dynamically obtain them. I.e., sometimes i may want id1, id2, id10, id100; and another time i may want id80, id90, id250000, etc.
Something like this would be more approp for my needs:
cols.i.want = c("id1","id2","id30")
sqldf("SELECT cols.i.want FROM mymatrixdata", dbname = "Test2.sqlite")
Again, unsure how to proceed here. Code snippets would also help.
A simple example would help me a lot here, no need to code the whole 48 files, etc. just a simple example would be great!
Note: I am using Linux server, SQlite 3 and R 2.13 (I could update it as well).
In the comments the poster explained that it is only necessary to retrieve specific rows, not columns:
library(RSQLite)
m <- matrix(1:24, 6, dimnames = list(LETTERS[1:6], NULL)) # test matrix
con <- dbConnect(SQLite()) # could add dbname= arg. Here use in-memory so not needed.
dbWriteTable(con, "m", as.data.frame(m)) # write
dbGetQuery(con, "create unique index mi on m(row_names)")
# retrieve submatrix back as m2
m2.df <- dbGetQuery(con, "select * from m where row_names in ('A', 'C')
order by row_names")
m2 <- as.matrix(m2.df[-1])
rownames(m2) <- m2.df$row_names
Note that relational databases are set based and the order that the rows are stored in is not guaranteed. We have used order by row_names to get out a specific order. If that is not good enough then add a column giving the row index: 1, 2, 3, ... .
REVISED based on comments.