Create predictions with custom CNN using tfrecord input - tensorflow

My aim is to classify images into ten categories. I have a tfrecord file as input. You can download it here (30 MB). My modified the code according to the answer:
import tensorflow as tf
import tensorflow.contrib.slim as slim
import numpy as np
def my_cnn(images, num_classes, is_training): # is_training is not used...
with slim.arg_scope([slim.max_pool2d], kernel_size=[3, 3], stride=2):
net = slim.conv2d(images, 64, [5, 5])
net = slim.max_pool2d(net)
net = slim.conv2d(net, 64, [5, 5])
net = slim.max_pool2d(net)
net = slim.flatten(net)
net = slim.fully_connected(net, 192)
net = slim.fully_connected(net, num_classes, activation_fn=None)
return net
data_path = 'train-some.tfrecords'
with tf.Graph().as_default():
batch_size, height, width, channels = 10, 224, 224, 3
feature = {'train/image': tf.FixedLenFeature([], tf.string),
'train/label': tf.FixedLenFeature([], tf.int64)}
filename_queue = tf.train.string_input_producer([data_path], num_epochs=1)
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example, features=feature)
image = tf.decode_raw(features['train/image'], tf.float32)
label = tf.cast(features['train/label'], tf.int32)
image = tf.reshape(image, [224, 224, 3])
images, labels = tf.train.shuffle_batch([image, label], batch_size, capacity=30, num_threads=1, min_after_dequeue=10)
num_classes = 10
logits = my_cnn(images, num_classes, is_training=True)
probabilities = tf.nn.softmax(logits)
with tf.Session() as sess:
init_op = [tf.global_variables_initializer(), tf.local_variables_initializer()]
# Run the init_op, evaluate the model outputs and print the results:
sess.run(init_op)
#probabilities = sess.run(probabilities)
# Create a coordinator, launch the queue runner threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
while not coord.should_stop():
while True:
prob = sess.run(probabilities)
print('Probabilities Shape:')
print(prob.shape)
except tf.errors.OutOfRangeError:
# When done, ask the threads to stop.
print('Done training -- epoch limit reached')
finally:
coord.request_stop()
# Wait for threads to finish.
coord.join(threads)
# Save the model
saver = tf.train.Saver()
saver.save(sess, './slim_model/custom_model')
Unfortunately, I still have error messages:
ValueError: Tensor Tensor("Softmax:0", shape=(10, 10), dtype=float32) is not an element of this graph.
ValueError: Fetch argument cannot be interpreted as a Tensor. (Tensor Tensor("Softmax:0", shape=(10, 10), dtype=float32) is not an element of this graph.)

The issue is with your training. You need to start the queues using tf.train.start_queue_runners that will run a few threads to process and enqueue examples. Create a Coordinator and ask the queue runner to start its threads with the coordinator.
Check the code changes:
with tf.Session() as sess:
init_op = [tf.global_variables_initializer(), tf.local_variables_initializer()]
# Run the init_op, evaluate the model outputs and print the results:
sess.run(init_op)
#probabilities = sess.run(probabilities)
# Create a coordinator, launch the queue runner threads.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
while not coord.should_stop():
while True:
prob = sess.run(probabilities)
print('Probabilities Shape:')
print(prob.shape)
except tf.errors.OutOfRangeError:
# When done, ask the threads to stop.
print('Done training -- epoch limit reached')
finally:
coord.request_stop()
# Wait for threads to finish.
coord.join(threads)
# Save the model
saver = tf.train.Saver()
saver.save(sess, './slim_model/custom_model'
Output:
Probabilities Shape:
(10, 10)
Probabilities Shape:
(10, 10)
Probabilities Shape:
(10, 10)
Probabilities Shape:
(10, 10)
Probabilities Shape:
(10, 10)
Done training -- epoch limit reached
Code with the above fixes along with saving and restoring the model can be downloaded from here.

Related

You must feed a value for placeholder tensor 'Placeholder_2' with dtype float and shape [?,10]

I don't know why occur this problem,I have checked many times, I have feed xs and ys to feed_dict. So, what is the reason for this problem? How do I modify my code to solve these error? Below is the error log.
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_2' with dtype float and shape [?,10]
[[node Placeholder_2 (defined at /home/jiayu/dropout.py:41) = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[{{node Mean_5/_55}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_271_Mean_5", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
This code run on ubuntu 16.04, tensorflow 1.12.0 and python 3.6.8.
from __future__ import print_function
import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
# load data
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3)
def add_layer(inputs, in_size, out_size, layer_name, activation_function=None, ):
# add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, )
Wx_plus_b = tf.matmul(inputs, Weights) + biases
# here to dropout
Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b, )
tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs
# define placeholder for inputs to network
keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32, [None, 64]) # 8x8
ys = tf.placeholder(tf.float32, [None, 10])
# add output layer
l1 = add_layer(xs, 64, 50, 'l1', activation_function=tf.nn.tanh)
prediction = add_layer(l1, 50, 10, 'l2', activation_function=tf.nn.softmax)
# the loss between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1])) # loss
tf.summary.scalar('loss', cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.Session()
merged = tf.summary.merge_all()
# summary writer goes in here
train_writer = tf.summary.FileWriter("logs/train", sess.graph)
test_writer = tf.summary.FileWriter("logs/test", sess.graph)
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init)
for i in range(500):
# here to determine the keeping probability
sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: 1})
if i % 50 == 0:
# record loss
train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1})
test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test, keep_prob: 1})
train_writer.add_summary(train_result, i)
test_writer.add_summary(test_result, i)
The right result is display scale in tensorboard.
You cannot run the script more than once because otherwise you are creating nested graph
For the first run, it will run OK without any errors. But when you run it more than once, nested computation graph will be created. You can view the behavior in tensorboard, after several runs, the computation graph will get bigger and bigger, and when you try to evaluate the bigger graph, extra placeholders simply don't get data fed to them and they will give error.
Here is the simple solution. Use ft.reset_default_graph() and put it before the place where you create the graph
tf.reset_default_graph()
# define placeholder for inputs to network
keep_prob = tf.placeholder(tf.float32, name='prob')
xs = tf.placeholder(tf.float32, [None, 64], name='x_input') # 8x8
ys = tf.placeholder(tf.float32, [None, 10], name='y_input')
...
some further reading Remove nodes from graph or reset entire default graph

Measuring GPU memory usage with TensorFlow profiler

Is there a way to properly measure GPU usage of tf.Estimator model using TensorFlow profiler? I've followed the documentation:
g = tf.Graph()
sess = tf.Session(graph=g)
run_meta = tf.RunMetadata()
time_and_memory_args = tf.profiler.ProfileOptionBuilder.time_and_memory()
with g.as_default():
data_shape = [BATCH_SIZE] + [3, 224, 224]
in_plh = tf.placeholder(tf.float32, data_shape)
model = some_model(in_plh, args=model_args, training=True)
images = np.random.rand(BATCH_SIZE, 3, 224, 224)
sess.run(tf.global_variables_initializer())
sess.run(model, feed_dict={in_plh: images})
time_and_memory = tf.profiler.profile(g, run_meta=run_meta, cmd='op',
options=time_and_memory_args)
if time_and_memory is not None:
print('Total requested bytes:', time_and_memory.total_requested_bytes)
But the printed result is always 0.

L2 regularization keep increasing during training

I am finetuning InceptionResnetV2 on TensorFlow. When training, the regularization loss keep linearly increasing and even much larger than cross entropy loss in the later stage of training. I have checked the training procedure, and make sure I am optimizing the cross entropy loss and L2 loss combined.
Is there anyone explain this weird thing a little bit? Any feedback is appreciated.
Here is the code and some TensorBoard plots.
import tensorflow as tf
from tensorflow.python.platform import tf_logging as logging
from inception_resnet_v2 import inception_resnet_v2, inception_resnet_v2_arg_scope
import os
import time
from preprocessing import aug_parallel_v2
import numpy as np
slim = tf.contrib.slim
# total training data number
sample_num = 625020
data_path = 'iNaturalist_train.tfrecords'
# State where your log file is at. If it doesn't exist, create it.
log_dir = './log_v5'
# tensorboard visualization path
filewriter_path = './filewriter_v5_Logits'
# State where your checkpoint file is
checkpoint_file = './inception_resnet_v2_2016_08_30.ckpt'
checkpoint_save_addr = './log_v5/fine-tuning_v5.ckpt'
# State the image size you're resizing your images to. We will use the default inception size of 299.
image_size = 299
# State the number of classes to predict:
num_classes = 8142
# ================= TRAINING INFORMATION ==================
# State the number of epochs to train
num_epochs = 5
# State your batch size
batch_size = 60
# Learning rate information and configuration
initial_learning_rate = 0.0005
learning_rate_decay_factor = 0.8
num_epochs_before_decay = 2
# put weight on different classes inversely proportional
# to total number of their image samples
label_count = np.loadtxt('label_count.txt', dtype=int)
inverse = lambda t: 1 / t
vfunc = np.vectorize(inverse)
multiplier = vfunc(label_count)
multiplier /= np.mean(multiplier)
def run():
if not os.path.exists(log_dir):
os.mkdir(log_dir)
feature = {'train/height': tf.FixedLenFeature([], tf.int64),
'train/width': tf.FixedLenFeature([], tf.int64),
'train/image': tf.FixedLenFeature([], tf.string),
'train/label': tf.FixedLenFeature([], tf.int64),
'train/sup_label': tf.FixedLenFeature([], tf.int64),
'train/aug_level': tf.FixedLenFeature([], tf.int64)}
# create a list of file names
filename_queue = tf.train.string_input_producer([data_path], num_epochs=None)
print(filename_queue)
reader = tf.TFRecordReader()
_, tfrecord_serialized = reader.read(filename_queue)
features = tf.parse_single_example(tfrecord_serialized, features=feature)
# Convert the image data from string back to the numbers
height = tf.cast(features['train/height'], tf.int64)
width = tf.cast(features['train/width'], tf.int64)
# change this line for your TFrecord version
tf_image = tf.image.decode_jpeg(features['train/image'])
tf_label = tf.cast(features['train/label'], tf.int32)
aug_level = tf.cast(features['train/aug_level'], tf.int32)
# tf_sup_label = tf.cast(features['train/sup_label'], tf.int64)
tf_image = tf.reshape(tf_image, tf.stack([height, width, 3]))
tf_label = tf.reshape(tf_label, [1])
aug_level = tf.reshape(aug_level, [1])
resized_image = tf.image.resize_images(images=tf_image, size=tf.constant([400, 400]), method=2)
resized_image = tf.cast(resized_image, tf.uint8)
tf_images, tf_labels, tf_aug = tf.train.shuffle_batch([resized_image, tf_label, aug_level], batch_size=batch_size,
capacity=2048, num_threads=16, allow_smaller_final_batch=False,
min_after_dequeue=256)
tf.logging.set_verbosity(tf.logging.INFO) # Set the verbosity to INFO level
IMAGE_HEIGHT = 299
IMAGE_WIDTH = 299
images = tf.placeholder(dtype=tf.float32, shape=[None, 299, 299, 3])
labels = tf.placeholder(dtype=tf.int32, shape=[None, 1])
weighted_level = tf.placeholder(dtype=tf.float32, shape=[None, 1])
# Know the number steps to take before decaying the learning rate and batches per epoch
num_batches_per_epoch = int(sample_num / batch_size)
num_steps_per_epoch = num_batches_per_epoch # Because one step is one batch processed
decay_steps = int(num_epochs_before_decay * num_steps_per_epoch)
# Create the model inference
with slim.arg_scope(inception_resnet_v2_arg_scope()):
logits, end_points = inception_resnet_v2(images, num_classes=num_classes, is_training=True)
# Define the scopes that you want to exclude for restoration
exclude = ['InceptionResnetV2/Logits', 'InceptionResnetV2/AuxLogits']
variables_to_restore = slim.get_variables_to_restore(exclude=exclude)
print("label test")
print(labels)
print(logits)
# Perform one-hot-encoding of the labels (Try one-hot-encoding within the load_batch function!)
one_hot_labels = tf.squeeze(tf.one_hot(labels, num_classes), [1])
print(one_hot_labels)
print(logits)
weighted_onehot = tf.multiply(one_hot_labels, weighted_level)
# Performs the equivalent to tf.nn.sparse_softmax_cross_entropy_with_logits but enhanced with checks
digits_loss = tf.losses.softmax_cross_entropy(onehot_labels=weighted_onehot, logits=logits)
reg_loss = tf.losses.get_regularization_loss()
total_loss = digits_loss + reg_loss
# Define your exponentially decaying learning rate
lr = tf.train.exponential_decay(
learning_rate=initial_learning_rate,
global_step=global_step,
decay_steps=decay_steps,
decay_rate=learning_rate_decay_factor,
staircase=True)
# train_vars = []
# Now we can define the optimizer that takes on the learning rate
train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
"InceptionResnetV2/Logits")
# RMSProp or Adam
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
# Create the train_op.
train_op = slim.learning.create_train_op(total_loss, optimizer, variables_to_train=train_vars)
predictions = tf.argmax(end_points['Predictions'], 1)
probabilities = end_points['Predictions']
accuracy, accuracy_update = tf.metrics.accuracy(predictions, labels)
metrics_op = tf.group(accuracy_update, probabilities)
tf.summary.scalar('losses/Reg_Loss', reg_loss)
tf.summary.scalar('losses/Digit_Loss', digits_loss)
tf.summary.scalar('losses/Total_Loss', total_loss)
tf.summary.scalar('accuracy', accuracy)
tf.summary.scalar('learning_rate', lr)
writer = tf.summary.FileWriter(filewriter_path)
writer.add_graph(tf.get_default_graph())
my_summary_op = tf.summary.merge_all()
def train_step(sess, train_op, global_step, imgs, lbls, weight):
'''
Simply runs a session for the three arguments provided and gives a logging on the time elapsed
for each global step
'''
# Check the time for each sess run
start_time = time.time()
total_loss, global_step_count, _ = sess.run([train_op, global_step, metrics_op],
feed_dict={images: imgs, labels: lbls, weighted_level: weight})
time_elapsed = time.time() - start_time
# Run the logging to print some results
logging.info('global step %s: digit_loss: %.4f (%.2f sec/step)',
global_step_count, total_loss, time_elapsed)
return total_loss, global_step_count
saver_pretrain = tf.train.Saver(variables_to_restore)
saver_train = tf.train.Saver(train_vars)
with tf.Session() as sess:
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
# Create a coordinator and run all QueueRunner objects
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
saver_pretrain.restore(sess, checkpoint_file)
start_time = time.time()
for step in range(int(num_steps_per_epoch * num_epochs)):
imgs, lbls, augs = sess.run([tf_images, tf_labels, tf_aug])
imgs, lbls = aug_parallel_v2(imgs, lbls, augs)
imgs = imgs[:, 50:349, 50:349, :]
imgs = 2*(imgs.astype(np.float32)) - 1
lbls = lbls.astype(np.int32)
weight = multiplier[lbls]
weight = np.array(weight).reshape((batch_size, 1))
# print(imgs[0, 0:10, 0:10, 0:2])
if step % num_batches_per_epoch == 0:
logging.info('Epoch %s/%s', step / num_batches_per_epoch + 1, num_epochs)
learning_rate_value, accuracy_value = sess.run([lr, accuracy],
feed_dict={images: imgs, labels: lbls, weighted_level: weight})
logging.info('Current Learning Rate: %s', learning_rate_value)
logging.info('Current Streaming Accuracy: %s', accuracy_value)
# optionally, print your logits and predictions for a sanity check that things are going fine.
logits_value, probabilities_value, predictions_value, labels_value = sess.run(
[logits, probabilities, predictions, labels],
feed_dict={images: imgs, labels: lbls, weighted_level: weight})
print('logits: \n', logits_value)
print('Probabilities: \n', probabilities_value)
print('predictions: \n', predictions_value)
print('Labels:\n:', labels_value)
# Log the summaries every 10 step.
if step % 20 == 0:
loss, global_step_count = train_step(sess, train_op, global_step, imgs, lbls, weight)
summaries = sess.run(my_summary_op, feed_dict={images: imgs, labels: lbls, weighted_level: weight})
writer.add_summary(summaries, global_step_count)
# sess.summary_computed(sess, summaries)
# If not, simply run the training step
else:
loss, _ = train_step(sess, train_op, global_step, imgs, lbls, weight)
if step % 2000 == 0:
logging.info('Saving model to disk now.')
saver_train.save(sess, checkpoint_save_addr, global_step=global_step)
print('one batch time: ', time.time() - start_time)
start_time = time.time()
# We log the final training loss and accuracy
logging.info('Final Loss: %s', loss)
logging.info('Final Accuracy: %s', sess.run(accuracy))
# Once all the training has been done, save the log files and checkpoint model
logging.info('Finished training! Saving model to disk now.')
saver_train.save(sess, checkpoint_save_addr, global_step=global_step)
# Stop the threads
coord.request_stop()
# Wait for threads to stop
coord.join(threads)
sess.close()
if __name__ == '__main__':
run()
I am new here, and don't have enough reputation to post images.
Here are two links for the accuracy plot and losses plot. You can easily tell the regularization loss is in a dominant position.
This is a difficult question to answer. I can give some pointers though.
In general, when you try to minimize digits_loss, that is to fit your model to your data, you will slowly change the weights in your layers. To counter potential overfitting, a L2 regularization loss (the sum of the squares of all weights, reg_loss in your code) is generally added to the overall loss (total_loss in your code.) These two forces generally act against each other and if the balance is right, you train a good model.
In your case you're taking a network (resnet_v2) that was developed for 1,001 classes and try to predict 8,142 classes. No problem with that per se, but you're upsetting the balance. So I believe you need to override the default weight decay of 0.00004 for resnet v2 to some higher value, in this line (note only 3 zeros in the decimals for a 10x increase):
with slim.arg_scope( inception_resnet_v2_arg_scope( weight_decay = 0.0004 ) ):
A higher weight_decay parameter will force the L2 loss to decrease faster. The problem is that this number is just a guess, I have no idea what an ideal value would be. You need to experiment with multiple values and figure it out.

TensorFlow: No decrease in CTC loss while training BLSTM

I am trying to create an end-to-end trainable offline English Handwriting Recognition Model (without segmenting individual character). I am using the word dataset from IAM Handwriting Database for training.
I tried decreasing the learning rate, increasing batch size, etc. but the loss keeps on fluctuating with no/significant overall decrease - TensorBoard visualization for cost at each step
I am new to TensorFlow so could have made some naive error. The code used:
class CRNN(object):
def __init__(self, config):
self.config = config
tf.reset_default_graph()
def read_and_decode(self, filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
# Define how to parse the example
context_features = {
'length': tf.FixedLenFeature([], dtype=tf.int64),
'out_length': tf.FixedLenFeature([], dtype=tf.int64)
}
sequence_features = {
'token': tf.FixedLenSequenceFeature([], dtype=tf.float32),
'labels': tf.FixedLenSequenceFeature([], dtype=tf.int64)
}
context_parsed, sequence_parsed = tf.parse_single_sequence_example(
serialized=serialized_example,
context_features=context_features,
sequence_features=sequence_features)
image = sequence_parsed['token']
label = tf.cast(sequence_parsed['labels'], tf.int32)
length = tf.cast(context_parsed['length'], tf.int32)
lab_length = tf.cast(context_parsed['out_length'], tf.int32)
image_shape = tf.cast(tf.stack([self.config.im_height,
length/self.config.im_height]), tf.int32)
image = tf.reshape(image, image_shape)
# Updating length to represent image width
length = tf.shape(image)[1]
# Batch the variable length tensor with dynamic padding
self.images, self.labels, self.lengths, self.lab_lengths = tf.train.batch(
tensors=[image, label, length, lab_length],
batch_size=self.config.batch_size, dynamic_pad=True)
def net(self):
batch_lab_length = tf.reduce_max(self.lab_lengths)
batch_im_length = tf.reduce_max(self.lengths)
# Reshape to time major
sequences = tf.reshape(self.images, [batch_im_length, self.config.batch_size,
self.config.im_height])
# Feed sequences into RNN
with tf.name_scope('RNN'):
self.cell_fw = tf.nn.rnn_cell.LSTMCell(num_units=self.config.rnn_num_hidden,
state_is_tuple=True)
self.cell_bw = tf.nn.rnn_cell.LSTMCell(num_units=self.config.rnn_num_hidden,
state_is_tuple=True)
self.output, self.state = tf.nn.bidirectional_dynamic_rnn(
cell_fw=self.cell_fw,
cell_bw=self.cell_bw,
inputs=sequences,
dtype=tf.float32,
sequence_length=self.lengths,
time_major=True,
scope='RNN'
)
# Reshaping to apply the same weights over the timesteps
self.output = tf.reshape(self.output, [-1, self.config.rnn_num_hidden])
self.out_W = tf.Variable(tf.truncated_normal([self.config.rnn_num_hidden,
self.config.num_classes],
stddev=0.1), name='out_W')
self.out_b = tf.Variable(tf.constant(0., shape=[self.config.num_classes]), name='out_b')
# Doing the affine projection
logits = tf.matmul(self.output, self.out_W) + self.out_b
# Reshaping back to the original shape
logits = tf.reshape(logits, [self.config.batch_size, -1, self.config.num_classes])
# Time major
logits = tf.transpose(logits, (1, 0, 2))
# Training computation
# Prepare sparse tensor for CTC loss
labs = tf.reshape(self.labels, (self.config.batch_size, batch_lab_length))
sparse_tensor_indices = tf.where(tf.less(tf.cast(0, tf.int32), labs))
labels_vals = tf.reshape(self.labels, [batch_lab_length*self.config.batch_size])
mask = tf.cast(tf.sign(labels_vals), dtype=tf.bool)
labels_vals = tf.boolean_mask(labels_vals,mask)
labels_sparse = tf.SparseTensor(indices=sparse_tensor_indices, values=labels_vals,
dense_shape=[self.config.batch_size,
tf.cast(batch_lab_length, tf.int64)])
self.loss = tf.nn.ctc_loss(labels_sparse, logits, sequence_length=self.lab_lengths,
preprocess_collapse_repeated=False, ctc_merge_repeated=False,
time_major=True)
self.cost = tf.reduce_mean(self.loss)
# Optimizer
self.optimizer = tf.train.MomentumOptimizer(learning_rate=0.01,
momentum=0.9, use_nesterov=True).minimize(self.cost)
# Predictions for the training, validation, and test data.
self.train_prediction = tf.nn.ctc_beam_search_decoder(logits,
sequence_length=self.lab_lengths)
def train(self):
num_steps = int((self.config.num_epochs*self.config.sample_size)/self.config.batch_size)
tf.reset_default_graph()
filename_queue = tf.train.string_input_producer(
[self.config.tfrecord_filename], num_epochs=self.config.num_epochs)
self.read_and_decode(filename_queue)
self.net()
# The op for initializing the variables.
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
saver = tf.train.Saver()
with tf.Session() as sess:
training_summary = tf.summary.scalar("training_cost", self.cost)
writer = tf.summary.FileWriter("./TensorBoard/graph", sess.graph)
sess.run(init_op)
print('Initialized')
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
start = time.time()
steps_time = start
epoch = 1
for step in range(num_steps):
_, c, predictions, actual_labels, train_summ = sess.run([self.optimizer, self.cost,
self.train_prediction,
self.labels, training_summary])
writer.add_summary(train_summ, step)
if (step % 10000 == 0):
preds = np.zeros((predictions[0][0].dense_shape))
i = 0
for idx in predictions[0][0].indices:
preds[idx[0]][idx[1]] = predictions[0][0].values[i]
i+=1
print(time.time() - steps_time)
steps_time = time.time()
print('Minibatch cost at step %d: %f' % (step, c))
print('Label =', [''.join([char_map_inv[j] for j in i]) for i in actual_labels],
'Prediction =', [''.join([char_map_inv[j] for j in i]) for i in preds])
if (step!=0 and step % int(self.config.sample_size/self.config.batch_size) == 0):
print('Epoch', epoch, 'Completed')
epoch+=1
last_step = step
saver.save(sess, "model_BLSTM", global_step=last_step)
writer.close()
print(time.time() - start)
After trying a lot of things unsuccessfully, I found that an incorrect argument was provided to the sequence_length argument of tf.nn.ctc_loss. It should be set to 'length of input sequence' but I had set it to 'length of output sequence(labels - number of character)'
More details can be found in comments under the selected answer to this question - CTC Loss InvalidArgumentError: sequence_length(b) <= time
Also, if one has a GPU it would be better to use Baidu's CTC GPU implementation (https://github.com/baidu-research/warp-ctc) as it can speed up the training a lot.
The problem is that you are feeding raw images in the LSTM, so it is very difficult for it to extract any useful information. The CRNN paper first uses a series of convolutional layers to extract features from the images, and then these are fed into the LSTM.

Restoring saved TensorFlow model to evaluate on test set

I have seen a few posts on restoring TF models and the Google doc page on exporting graphs but I think I am missing something.
I use the code in this Gist to save the model along with this utils file to which defines the model
Now I would like to restore it and run in a previously unseen test data as follows:
def evaluate(X_data, y_data):
num_examples = len(X_data)
total_accuracy = 0
total_loss = 0
sess = tf.get_default_session()
acc_steps = len(X_data) // BATCH_SIZE
for i in range(acc_steps):
batch_x, batch_y = next_batch(X_val, Y_val, BATCH_SIZE)
loss, accuracy = sess.run([loss_value, acc], feed_dict={
images_placeholder: batch_x,
labels_placeholder: batch_y,
keep_prob: 0.5
})
total_accuracy += (accuracy * len(batch_x))
total_loss += (loss * len(batch_x))
return (total_accuracy / num_examples, total_loss / num_examples)
## re-execute the code that defines the model
# Image Tensor
images_placeholder = tf.placeholder(tf.float32, shape=[None, 32, 32, 3], name='x')
gray = tf.image.rgb_to_grayscale(images_placeholder, name='gray')
gray /= 255.
# Label Tensor
labels_placeholder = tf.placeholder(tf.float32, shape=(None, 43), name='y')
# dropout Tensor
keep_prob = tf.placeholder(tf.float32, name='drop')
# construct model
logits = inference(gray, keep_prob)
# calculate loss
loss_value = loss(logits, labels_placeholder)
# training
train_op = training(loss_value, 0.001)
# accuracy
acc = accuracy(logits, labels_placeholder)
with tf.Session() as sess:
loader = tf.train.import_meta_graph('gtsd.meta')
loader.restore(sess, tf.train.latest_checkpoint('./'))
sess.run(tf.initialize_all_variables())
test_accuracy = evaluate(X_test, y_test)
print("Test Accuracy = {:.3f}".format(test_accuracy[0]))
I'm getting a test accuracy of only 3%. However If I don't close the Notebook and run the test code immediately after training the model, I get a 95% accuracy.
This leads me to believe I'm not loading the model correctly?
The problem arises from these two lines:
loader.restore(sess, tf.train.latest_checkpoint('./'))
sess.run(tf.initialize_all_variables())
The first line loads the saved model from a checkpoint. The second line re-initializes all of the variables in the model (such as the weight matrices, convolutional filters, and bias vectors), usually to random numbers, and overwrites the loaded values.
The solution is simple: delete the second line (sess.run(tf.initialize_all_variables())) and evaluation will proceed with the trained values loaded from the checkpoint.
PS. There is a small chance that this change will give you an error about "uninitialized variables". In that case, you should execute sess.run(tf.initialize_all_variables()) to initialize any variables not saved in the checkpoint before executing loader.restore(sess, tf.train.latest_checkpoint('./')).
I had a similar problem and for me this worked:
with tf.Session() as sess:
saver=tf.train.Saver(tf.all_variables())
saver=tf.train.import_meta_graph('model.meta')
saver.restore(sess,"model")
test_accuracy = evaluate(X_test, y_test)
The answer found here is what ended up working as follows:
save_path = saver.save(sess, '/home/ubuntu/gtsd-12-23-16.chkpt')
print("Model saved in file: %s" % save_path)
## later re-run code that creates the model
# Image Tensor
images_placeholder = tf.placeholder(tf.float32, shape=[None, 32, 32, 3], name='x')
gray = tf.image.rgb_to_grayscale(images_placeholder, name='gray')
gray /= 255.
# Label Tensor
labels_placeholder = tf.placeholder(tf.float32, shape=(None, 43), name='y')
# dropout Tensor
keep_prob = tf.placeholder(tf.float32, name='drop')
# construct model
logits = inference(gray, keep_prob)
# calculate loss
loss_value = loss(logits, labels_placeholder)
# training
train_op = training(loss_value, 0.001)
# accuracy
acc = accuracy(logits, labels_placeholder)
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, '/home/ubuntu/gtsd-12-23-16.chkpt')
print("Model restored.")
test_accuracy = evaluate(X_test, y_test)
print("Test Accuracy = {:.3f}".format(test_accuracy[0]*100))