I can't seem to find any documentation about this. I have an apache-beam pipeline that takes some information, formats it into TableRows and then writes to BigQuery.
[+] The problem:
The rows are not written to BigQuery until the Dataflow job finishes. If I have a Dataflow job that takes a long time I'd like to be able to see the rows being inserted into BigQuery, can anybody point me the right direction?
Thanks in advance
Since you're working in batch mode, data need to be written at the same time in the same table. If you're working with partitions, all data belonging to a partition need to be written at the same time. That's why the insertion is done last.
Please note that the WriteDisposition is very important when you work in batches because either you append data, or truncate. But does this distinction make sense for streaming pipelines ?
In java, you can specify the Method of insertion with the following function :
.withMethod(BigQueryIO.Write.Method.STREAMING_INSERTS))
I've not tested it, but I believe it should work as expected. Also note that streaming inserts to BigQuery are not free of charge.
Depending on how complex your initial transform+load operation is, you could just use the big query driver to do streaming inserts into the table from your own worker pool, rather than loading it in via a dataflow job explicitly.
Alternatively, you could do smaller batches:
N Independent jobs each loading TIME_PERIOD/N amounts of data
Related
I am implementing an ETL job that migrates a non partitioned BigQuery Table to a partitioned one.
To do so I use the Storage API from BigQuery. This creates a number of sessions to pull Data from.
In order to route the BigQuery writes to the right partition I use the File Loads methods.
Streaming inserts was not the option due to the limitation of 30 days.
Storage Write API seems to be limited identifying the partition.
By residing to the File Load Method the Data are being written to GCS.
The issue is that this takes too much time and there is the risk of the sessions to close.
Behind the scenes the File Load Method is a complex one with multiple steps. For example writings to GCS and combining the entries to a destination/partition joined file.
Based on the Dataflow processes it seems that nodes can execute workloads on different parts of the pipeline.
How can I avoid the risk of the session closing? Is there a way for my Dataflow nodes to focus only on the critical part which is write to GCS first and once this is done, then focus on all the other aspects?
You can do a Reshuffle right before applying the write to BigQuery. In Dataflow, that will create a checkpoint, and a new stage in the job. The write to BigQuery would start when all steps previous to the reshuffle have finished, and in case of errors and retries, the job would backtrack to that checkpoint.
Please note that doing a reshuffle implies doing a shuffling of data, so there will be a performance impact.
I'm trying to use flink in both a streaming and batch way, to add a lot of data into Accumulo (A few million a minute). I want to batch up records before sending them to Accumulo.
I ingest data either from a directory or via kafka, convert the data using a flatmap and then pass to a RichSinkFunction, which adds the data to a collection.
With the streaming data, batching seems ok, in that I can add the records to a collection of fixed size which get sent to accumulo once the batch threshold is reached. But for the batch data which is finite, I'm struggling to find a good approach to batching as it would require a flush time out in case there is no further data within a specified time.
There doesn't seem to be an Accumulo connector unlike for Elastic search or other alternative sinks.
I thought about using a Process Function with a trigger for batch size and time interval, but this requires a keyed window. I didn't want to go down the keyed route as data looks to be very skewed, in that some keys would have a tonne of records and some would have very few. If I don't use a windowed approach, then I understand that the operator won't be parallel. I was hoping to lazily batch, so each sink only cares about numbers or an interval of time.
Has anybody got any pointers on how best to address this?
You can access timers in a sink by implementing ProcessingTimeCallback. For an example, look at the BucketingSink -- its open and onProcessingTime methods should get you started.
CSV files get uploaded to some FTP server (for which I don't have SSH access) in a daily basis and I need to generate weekly data that merges those files with transformations. That data would go into a history table in BQ and a CSV file in GCS.
My approach goes as follows:
Create a Linux VM and set a cron job that syncs the files from the
FTP server with a GCS bucket (I'm using GCSFS)
Use an external table in BQ for each category of CSV files
Create views with complex queries that transform the data
Use another cron job to create a table with the historic data and also the CSV file on a weekly basis.
My idea is to remove as much middle processes as I can and to make the implementation as easy as possible, including dataflow for ETL, but I have some questions first:
What's the problem with my approach in terms of efficiency and money?
Is there anything DataFlow can provide that my approach can't?
any ideas about other approaches?
BTW, I ran into one problem that might be fixable by parsing the csv files myself rather than using external tables, which is invalid characters, like the null char, so I can get rid of them, while as an external table there is a parsing error.
Probably your ETL will be simplified by Google DataFlow Pipeline batch execution job. Upload your files to the GCS bucket. For transforming use pipeline transformation to strip null values and invalid character (or whatever your need is). On those transformed dataset use your complex queries like grouping it by key, aggregating it (sum or combine) and also if you need side inputs data-flow provides ability to merge other data-sets into the current the data-set too. Finally the transformed output can written to BQ or you can write your own custom implementation for writing those results.
So the data-flow gives you very high flexibility to your solution, you can branch the pipeline and work differently on each branch with same data-set. And regarding the cost, if you run your batch job with three workers, which is the default that should not be very costly, but again if you just want to concentrate on your business logic and not worry about the rest, google data-flow is pretty interesting and its very powerful if used wisely.
Data-flow helps you to keep everything on a single plate and manage them effectively. Go through its pricing and determine if it could be the best fit for you (your problem is completely solvable with google data-flow), Your approach is not bad but needs extra maintenance with those pieces.
Hope this helps.
here are a few thoughts.
If you are working with a very low volume of data then your approach may work just fine. If you are working with more data and need several VMs, dataflow can automatically scale up and down the number of workers your pipeline uses to help it run more efficiently and save costs.
Also, is your linux VM always running? Or does it only spin up when you run your cron job? A batch Dataflow job only runs when it needed, which also helps to save on costs.
In Dataflow you could use TextIO to read each line of the file in, and add your custom parsing logic.
You mention that you have a cron job which puts the files into GCS. Dataflow can read from GCS, so it would probably be simplest to keep that process around and have your dataflow job read from GCS. Otherwise you would need to write a custom source to read from your FTP server.
Here are some useful links:
https://cloud.google.com/dataflow/service/dataflow-service-desc#autoscaling
Our Data Warehouse team is evaluating BigQuery as a Data Warehouse column store solution and had some questions regarding its features and best use. Our existing etl pipeline consumes events asynchronously through a queue and persists the events idempotently into our existing database technology. The idempotent architecture allows us to on occasion replay several hours or days of events to correct for errors and data outages with no risk of duplication.
In testing BigQuery, we've experimented with using the real time streaming insert api with a unique key as the insertId. This provides us with upsert functionality over a short window, but re-streams of the data at later times result in duplication. As a result, we need an elegant option for removing dupes in/near real time to avoid data discrepancies.
We had a couple questions and would appreciate answers to any of them. Any additional advice on using BigQuery in ETL architecture is also appreciated.
Is there a common implementation for de-duplication of real time
streaming beyond the use of the tableId?
If we attempt a delsert (via an delete followed by an insert using
the BigQuery API) will the delete always precede the insert, or do
the operations arrive asynchronously?
Is it possible to implement real time streaming into a staging
environment, followed by a scheduled merge into the destination
table? This is a common solution for other column store etl
technologies but we have seen no documentation suggesting its use in
BigQuery.
We let duplication happen, and write our logic and queries in a such way that every entity is a streamed data. Eg: a user profile is a streamed data, so there are many rows placed in time and when we need to pick the last data, we use the most recent row.
Delsert is not suitable in my opinion as you are limited to 96 DML statements per day per table. So this means you need to temp store in a table batches, for later to issue a single DML statement that deals with a batch of rows, and updates a live table from the temp table.
If you consider delsert, maybe it's easier to consider writing a query to only read most recent row.
Streaming followed by scheduled merge is possible. Actually you can rewrite some data in the same table, eg: removing dups. Or scheduled query batch content from temp table and write to live table. This is somehow the same as let duplicate happening and later deal within a query with it, also called re-materialization if you write to the same table.
I'm looking to use Dataflow to load data into BigQuery tables using BQ load jobs - not streaming (streaming would cost too much for our use case). I see that the Dataflow SDK has built in support for inserting data via BQ streaming, but I wasn't able to find anything in the Dataflow SDK that supports load jobs out of the box.
Some questions:
1) Does the Dataflow SDK have OOTB support for BigQuery load job inserts? If not, is it planned?
2) If I need to roll my own, what are some good approaches?
If I have to roll my own, performing a BQ load job using Google Cloud Storage is a multi step process - write the file to GCS, submit the load job via the BQ API, and (optionally) check the status until the job has completed (or failed). I'd hope I could use the existing TextIO.write() functionality to write to GCS, but I'm not sure how I'd compose that step with the subsequent call to the BQ API to submit the load job (and optionally the subsequent calls to check the status of the job until it's complete).
Also, I'd be using Dataflow in streaming mode, with windows of 60 seconds - so I'd want to do the load job every 60 seconds as well.
Suggestions?
I'm not sure which version of Apache Beam you are using, but now it's possible to use a micro-batching tactic using a Stream Pipeline. If you decide one way or another you can use something like this:
.apply("Saving in batches", BigQueryIO.writeTableRows()
.to(destinationTable(options))
.withMethod(Method.FILE_LOADS)
.withJsonSchema(myTableSchema)
.withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
.withWriteDisposition(WriteDisposition.WRITE_APPEND)
.withExtendedErrorInfo()
.withTriggeringFrequency(Duration.standardMinutes(2))
.withNumFileShards(1);
.optimizedWrites());
Things to keep in mind
There are 2 different methods: FILE_LOADS and STREAMING_INSERT, if you use the first one you need to include the withTriggeringFrequency and withNumFileShards. For the first one, from my experience, is better to use minutes and the number will depend on the amount of throughput data. If you receive quite a lot try to keep it small, I have seen "stuck errors" when you increase it too much. The shards can affect mostly your GCS billing, if you add to much shards it will create more files per table per x amount of minutes.
If your input data size is not so big the streaming insert can work really well and the cost shouldn't be a big deal. In that scenario you can use STREAMING_INSERT method and remove the withTriggeringFrequency and withNumFileShards. Also, you can add withFailedInsertRetryPolicy like InsertRetryPolicy.retryTransientErrors() so no rows are being lost (keep in mind that idempotency is not guaranteed with STREAM_INSERTS, so duplication is possible)
You can check your Jobs in BigQuery and validate that everything is working! Keep in mind the policies for jobs with BigQuery (I think is 1000 jobs per table) when you are trying to define triggering frequency and shards.
Note: You can always read this article about efficient aggregation pipelines https://cloud.google.com/blog/products/data-analytics/how-to-efficiently-process-both-real-time-and-aggregate-data-with-dataflow
BigQueryIO.write() always uses BigQuery load jobs when the input PCollection is bounded. If you'd like it to also use them if it is unbounded, specify .withMethod(FILE_LOADS).withTriggeringFrequency(...).