Azure IoT Hub and reliable direct methods - azure-iot-hub

We are working with a scenario where a device can be "unlocked" and we want to be certain that the unlock-state is properly propagated the server.
For the moment we are using Direct Methods, but there are concerns regarding what happens when the call times out. As we understand it if the server times out but the device successfully responds (getting an MQTT PUBACK from the IoT-Hub), then we have an inconsistency where the device is "unlocked" but the server think it failed. This is a state we want to avoid and it's important that the device and server are in synch.
Are there any good patterns how to solve this?

In my opinion, please don't worry about this issue. Direct methods represent a request-reply interaction with a device similar to an HTTP call in that they succeed or fail immediately (after a user-specified timeout). This approach is useful for scenarios where the course of immediate action is different depending on whether the device was able to respond.Direct methods are synchronous and either succeed or fail after the timeout period (default: 30 seconds, settable up to 3600 seconds). But it is no guarantee on ordering or any concurrency semantics on method calls.

We are going to rethink how we see the timeout and embrace uncertainty in this case. If we timeout we will think that as inconclusive and wait for next telemetry data from the device to be conclusive.

Related

Can I send an API response before successful persistence of data?

I am currently developing a Microservice that is interacting with other microservices.
The problem now is that those interactions are really time-consuming. I already implemented concurrent calls via Uni and uses caching where useful. Now I still have some calls that still need some seconds in order to respond and now I thought of another thing, which I could do, in order to improve the performance:
Is it possible to send a response before the sucessfull persistence of data? I send requests to the other microservices where they have to persist the results of my methods. Can I already send the user the result in a first response and make a second response if the persistence process was sucessfull?
With that, the front-end could already begin working even though my API is not 100% finished.
I saw that there is a possible status-code 207 but it's rather used with streams where someone wants to split large files. Is there another possibility? Thanks in advance.
"Is it possible to send a response before the sucessfull persistence of data? Can I already send the user the result in a first response and make a second response if the persistence process was sucessfull? With that, the front-end could already begin working even though my API is not 100% finished."
You can and should, but it is a philosophy change in your API and possibly you have to consider some edge cases and techniques to deal with them.
In case of a long running API call, you can issue an "ack" response, a traditional 200 one, only the answer would just mean the operation is asynchronous and will complete in the future, something like { id:49584958, apicall:"create", status:"queued", result:true }
Then you can
poll your API with the returned ID to see if the operation that is still ongoing, has succeeded or failed.
have a SSE channel (realtime server side events) where your server can issue status messages as pending operations finish
maybe using persistent connections and keepalives, or flushing the response in the middle, you can achieve what you point out, ie. like a segmented response. I am not familiar with that approach as I normally go for the suggesions above.
But in any case, edge cases apply exactly the same: For example, what happens if then through your API a user issues calls dependent on the success of an ongoing or not even started previous command? like for example, get information about something still being persisted?
You will have to deal with these situations with mechanisms like:
Reject related operations until pending call is resolved "server side": Api could return ie. a BUSY error informing that operations are still ongoing when you want to, for example, delete something that still is being created.
Queue all operations so the server executes all them sequentially.
Allow some simulatenous operations if you find they will not collide (ie. create 2 unrelated items)

Async WCF and Protocol Behaviors

FYI: This will be my first real foray into Async/Await; for too long I've been settling for the familiar territory of BackgroundWorker. It's time to move on.
I wish to build a WCF service, self-hosted in a Windows service running on a remote machine in the same LAN, that does this:
Accepts a request for a single .ZIP archive
Creates the archive and packages several files
Returns the archive as its response to the request
I have to support archives as large as 10GB. Needless to say, this scenario isn't covered by basic WCF designs; we must take additional steps to meet the requirement. We must eliminate timeouts while the archive is building and memory errors while it's being sent. Both of these occur under basic WCF designs, depending on the size of the file returned.
My plan is to proceed using task-based asynchronous WCF calls and streaming mode.
I have two concerns:
Is this the proper approach to the problem?
Microsoft has done a nice job at abstracting all of this, but what of the underlying protocols? What goes on 'under the hood?' Does the server keep the connection alive while the archive is building (could be several minutes) or instead does it close the connection and initiate a new one once the operation is complete, thereby requiring me to properly route the request through the client machine firewall?
For #2, clearly I'm hoping for the former (keep-alive). But after some searching I'm not easily finding an answer. Perhaps you know.
You need streaming for big payloads. That is the right approach. This has nothing at all to do with asynchronous IO. The two are independent. The client cannot even tell that the server is async internally.
I'll add my standard answers for whether to use async IO or not:
https://stackoverflow.com/a/25087273/122718 Why does the EF 6 tutorial use asychronous calls?
https://stackoverflow.com/a/12796711/122718 Should we switch to use async I/O by default?
Each request runs over a single connection that is kept alive. This goes for both streaming big amounts of data as well as big initial delays. Not sure why you are concerned about routing. Does your router kill such connections? That's a problem.
Regarding keep alive, there is nothing going over the wire to do that. TCP sessions can stay open indefinitely without any kind of wire traffic.

blocked requests in io_service

I have implemented client server program using boost::asio library.
In my implementation there are times when io_service.run() blocks indefinitely. In case I pass another request to io_service, the blocked call begins to execute normally.
Is there any way to see what are the pending requests inside the io_service queue ?
I have not used work object to block the run call!
There are no official ways to query into the io_service to find all pending request. However, there are a few techniques to debug the problem:
Boost 1.47 introduced handler tracking. Simply define BOOST_ASIO_ENABLE_HANDLER_TRACKING and Boost.Asio will write debug output, including timestamps, an identifier, and the operation type, to the standard error stream.
Attach a debugger dig through the layers to find and examine operation queues. This answer covers both understanding handler tracking and using a debugger to examine an operation queue for the epoll_reactor.
Finally, if you believe it is a bug, then it may be worth updating to the latest version or checking the revision history for relevant changes. Regardless, describing the problem in more detail may allow others to help identify the source of the problem and potential solutions.
Now i spent a few hours reading and experimenting (i need more boost::asio functionality for work as well) and it turns out: Kind of.
But it is not as straightforward or readable as one might hope.
Under the hood (well, under the outermost hood) io_service has a bunch of other services registered, which do the work async_ operations of their respective fields require.
These are the "Services" described in the reference.
Now sadly, the services stay registered, wether there is work to do or not. For example if your io_service has a udp socket, it will still have all the corresponding services, even if the socket itself is inactive.
But you can ask your io_service which services it has. Lets say you want to know wether your io_service called m_io_service has an udp datagram_socket_service. Then you can call something like:
if (boost::asio::has_service<boost::asio::datagram_socket_service<boost::asio::ip::udp> >(m_io_service))
{
//Whatever
}
That does not help a lot, because it will be true no matter wether the socket is active or not. But after you know, that you have that service, you can get a ref to it using use_service instead of has_service but with the same elegant amount of <>.
And now you can inspect the service to see what it is up to. Sadly, it will not tell you what the outstanding handlers names are (probably partly because it does not know them) but if it is a socket, you can get its implemention_type and with that check whether it currently is_open or find either the local_endpoint as well as the remote_endpoint.
In case of a deadline_timer_service you can, among other stuff, find out when it expires_at.
See the reference for more information what the service is and is not willing to tell you.
http://www.boost.org/doc/libs/1_54_0/doc/html/boost_asio/reference.html
This information should then hopefully allow you to determine which async_ operation did not return.
And if not, at the very least you can cancel any unexpectedly active services.

Are WCF callbacks only for short-lived connections?

I was told that WCF callbacks are not to be used in situations when the connection is kept for a long time (say, a week) even though the callback operations themselves are short (< 1s). Is this true? Where can I find more information on this?
Since I still got no reply, I'll add my own thoughts.
To answer the actual question, no, WCF connections can be used for long-term connections. Nothing in the design prevents that by itself, and it's not an anti-pattern.
However, since any kind of connection is unstable to a certain degree, it is required to handle (both intended and accidental) connection faults. Clients need to be able to reconnect, and servers should not choke on lost connections. In the specific case of WCF the server should also be able to persist and restore its data no matter when or how it is disposed.

WCF Server Push connectivity test. Ping()?

Using techniques as hinted at in:
http://msdn.microsoft.com/en-us/library/system.servicemodel.servicecontractattribute.callbackcontract.aspx
I am implementing a ServerPush setup for my API to get realtime notifications from a server of events (no polling). Basically, the Server has a RegisterMe() and UnregisterMe() method and the client has a callback method called Announcement(string message) that, through the CallbackContract mechanisms in WCF, the server can call. This seems to work well.
Unfortunately, in this setup, if the Server were to crash or is otherwise unavailable, the Client won't know since it is only listening for messages. Silence on the line could mean no Announcements or it could mean that the server is not available.
Since my goal is to reduce polling rather than immediacy, I don't mind adding a void Ping() method on the Server alongside RegisterMe() and UnregisterMe() that merely exists to test connectivity of to the server. Periodically testing this method would, I believe, ensure that we're still connected (and also that no Announcements have been dropped by the transport, since this is TCP)
But is the Ping() method necessary or is this connectivity test otherwise available as part of WCF by default - like serverProxy.IsStillConnected() or something. As I understand it, the channel's State would only return Faulted or Closed AFTER a failed Ping(), but not instead of it.
2) From a broader perspective, is this callback approach solid? This is not for http or ajax - the number of connected clients will be few (tens of clients, max). Are there serious problems with this approach? As this seems to be a mild risk, how can I limit a slow/malicious client from blocking the server by not processing it's callback queue fast enough? Is there a kind of timeout specific to the callback that I can set without affecting other operations?
Your approach sounds reasonable, here are some links that may or may not help (they are not quite exactly related):
Detecting Client Death in WCF Duplex Contracts
http://tomasz.janczuk.org/2009/08/performance-of-http-polling-duplex.html
Having some health check built into your application protocol makes sense.
If you are worried about malicious clients, then add authorization.
The second link I shared above has a sample pub/sub server, you might be able to use this code. A couple things to watch out for -- consider pushing notifications via async calls or on a separate thread. And set the sendTimeout on the tcp binding.
HTH
I wrote a WCF application and encountered a similar problem. My server checked clients had not 'plug pulled' by periodically sending a ping to them. The actual send method (it was asynchronous being a server) had a timeout of 30 seconds. The client simply checked it received the data every 30 seconds, while the server would catch an exception if the timeout was reached.
Authorisation was required to connect to the server (by using the built-in feature of WCF that force the connecting person to call a particular method first) so from a malicious client perspective you could easily add code to check and ban their account if they do something suspicious, while disconnecting users who do not authenticate.
As the server I wrote was asynchronous, there wasn't any way to really block it. I guess that addresses your last point, as the asynchronous send method fires off the ping (and any other sending of data) and returns immediately. In the SendEnd method it would catch the timeout exception (sometimes multiple for the client) and disconnect them, without any blocking or freezing of the server.
Hope that helps.
You could use a publisher / subscriber service similar to the one suggested by Juval:
http://msdn.microsoft.com/en-us/magazine/cc163537.aspx
This would allow you to persist the subscribers if losing the server is a typical scenario. The publish method in this example also calls each subscribers on a separate thread, so a few dead subscribers will not block others...