How to train Wit.ai for languages other then english? - wit.ai

How do u input different languages on Wit.ai.
I have tried writing the other languages in english and training.
But I want to train it on the languages own script.

wit already support lots of languages, you can see list of supported languages here. Just start training wit with any of supported languages and remember to set the language in app setting.

Related

Other programming languages in colab?

Is it possible that Google also includes other languages in colab apart from Python? The truth is that I would be interested if they include Ruby
Excuse me for my English, I know it's bad.

Package for Twitter sentiment analysis

I'm trying to do Twitter sentiment analysis on Chinese, French, Norwegian, Russian, Persian, Hebrew, German, Hindi, Indonesian, Japanese, Korean, Portuguese, Turkish and Arabic. Just wanna ask if there are any packages for these languages and in general what languages have supporting packages to do Twitter sentiment analysis in? The programming language doesn't matter. Thx!!!
From my own experience, the best way to use sentiment classifiers on twitter is to build your own bag of words in the language of your choice.
I recommend using Vader, a python tool for lexicon-based analysis specifically designed for social media. However, Vader is available only in English. In that case, what you should do is obtain lists of words in other languages and translate them using the Google API. Then you employ Vader.
You can check this page for details: https://towardsdatascience.com/almost-real-time-twitter-sentiment-analysis-with-tweep-vader-f88ed5b93b1c
This is not the most appropriate procedure. It is best to focus on one or two languages because there are cultural differences that will reduce the accuracy of the algorithm.
I hope you find it helpful. Greeting.

IPA (International Phonetic Alphabet) Transcription with Tensorflow

I'm looking into designing a software platform that will aid linguists and anthropologists in their study of previously unstudied languages. Statistics show that around 1,000 languages exist that have never been studied by a person outside of their respective speaker groups.
My goal is to utilize TensorFlow to make a platform that will allow linguists to study and document these languages more efficiently, and to help them create written systems for the ones that don't have a written system already. One of their current methods of accomplishing such a task is three-fold: 1) Record a native speaker conversing in the language, 2) Listening to that recording and trying to transcribe it into the IPA, 3) From the phonetics, analyzing the phonemics and phonotactics of the language to eventually create a written system for the speaker.
My proposed platform would cut that research time down from a minimum of a year to a maximum of six months. Before I start, I have some questions...
What would be required to train TensorFlow to transcribe live audio into the IPA? Has this already been done? and if so, how would I utilize a previous solution for this project? Is a project like this even possible with TensorFlow? if not, what would you recommend using instead?
My apologies for the magnitude of this question. I don't have much experience in the realm of machine learning, as I am just beginning the research process for this project. Any help is appreciated!
I guess I will take a first shot at answering this. Since the question is pretty general, my answer will have to be pretty general as well.
What would be required. At the very least you would have to have a large dataset of pre-transcribed data. Ideally a large amount of spoken language audio mapped to characters in the phonetic alphabet, so the system could learn the sound of individual characters rather than whole transcribed words. If such a dataset doesn't exist, a less granular dataset could be used, mapping single words to their transcriptions. Then you would need a model, that is the actual neural network architecture implemented in code. And lastly you would need some computing resources. This is not something you can train casually, you would either have to buy some time in a cloud based machine learning framework (like Google Cloud ML) or build a fairly expensive machine to train at home.
Has this been done? I don't know. I don't think so. There have been published papers reporting various degrees of success at training systems to transcribe speech. Here is one, for example, http://deeplearning.stanford.edu/lexfree/lexfree.pdf It seems that since the alphabet you want to transcribe to is specifically designed to capture the way words sound rather than just write down the words you might have more success at training such a model.
Is it possible with TensorFlow. Yes, most likely. TensorFlow is well suited for implementing most modern deep learning architectures. Unless you end up designing some really weird and very original model for this purpose, TensorFlow should work just fine.
Edit: after some thought in part 1, you would have to use a dataset mapping spoken words to their transcriptions, since I expect that the same sound pronounced separately would be different from when the same sound is used in a word.
This has actually been done, albeit in PyTorch, by a group at CMU: https://github.com/xinjli/allosaurus

Automated Design in CAD, Analysis in FEA, and Optimization

I would like to optimize a design by having an optimizer make changes to a CAD file, which is then analyzed in FEM, and the results fed back into the optimizer to make changes on the design based on the FEM, until the solution converges to an optimum (mass, stiffness, else).
This is what I envision:
create a blueprint of the part in a CAD software (e.g. CATIA).
run an optimizer code (e.g. fmincon) from within a programming language (e.g. Python). The parameters of the optimizer are parameters of the CAD model (angles, lengths, thicknesses, etc.).
the optimizer evaluates a certain design (parameter set). The programming language calls the CAD software and modifies the design accordingly.
the programming language extracts some information (e.g. mass).
then the programming language extracts a STEP file and passes it a FEA solver (e.g. Abaqus) where a predefined analysis is performed.
the programming language reads the results (e.g. max van Mises stress).
the results from CAD and FEM (e.g. mass and stress) are fed to the optimizer, which changes the design accordingly.
until it converges.
I know this exists from within a closed architecture (e.g. isight), but I want to use an open architecture where the optimizer is called from within an open programming language (ideally Python).
So finally, here are my questions:
Can it be done, as I described it or else?
References, tutorials please?
Which softwares do you recommend, for programming, CAD and FEM?
Yes, it can be done. What you're describing is a small parametric structural sizing multidisciplinary optimization (MDO) environment. Before you even begin coding up the tools or environment, I suggest doing some preliminary work on a few areas
Carefully formulate the minimization problem (minimize f(x), where x is a vector containing ... variables, subject to ... constraints, etc.)
Survey and identify individual tools of interest
How would each tool work? Input variables? Output variables?
Outline in a Design Structure Matrix (a.k.a. N^2 diagram) how the tools will feed information (variables) to each other
What optimizer is best suited to your problem (MDF?)
Identify suitable convergence tolerance(s)
Once the above steps are taken, I would then start to think MDO implementation details. Python, while not the fastest language, would be an ideal environment because there are many tools that were built in Python to solve MDO problems like the one you have and the low development time. I suggest going with the following packages
OpenMDAO (http://openmdao.org/): a modern MDO platform written by NASA Glenn Research Center. The tutorials do a good job of getting you started. Note that each "discipline" in the Sellar problem, the 2nd problem in the tutorial, would include a call to your tool(s) instead of a closed-form equation. As long as you follow OpenMDAO's class framework, it does not care what each discipline is and treats it as a black-box; it doesn't care what goes on in-between an input and an output.
Scipy and numpy: two scientific and numerical optimization packages
I don't know what software you have access to, but here are a few tool-related tips to help you in your tool survey and identification:
Abaqus has a Python API (http://www.maths.cam.ac.uk/computing/software/abaqus_docs/docs/v6.12/pdf_books/SCRIPT_USER.pdf)
If you need to use a program that does not have an API, you can automate the GUI using Python's win32com or Pywinauto (GUI automation) package
For FEM/FEA, I used both MSC PATRAN and MSC NASTRAN on previous projects since they have command-line interfaces (read: easy to interface with via Python)
HyperSizer also has a Python API
Install Pythonxy (https://code.google.com/p/pythonxy/) and use the Spyder Python IDE (included)
CATIA can be automated using win32com (quick Google search on how to do it: http://code.activestate.com/recipes/347243-automate-catia-v5-with-python-and-pywin32/)
Note: to give you some sort of development time-frame, what you're asking will probably take at least two weeks to develop.
I hope this helps.

FSM framework required

Please recommend framework for Finite State Machine creation and simulation. I am aware of Stateflow package in Matlab, but are there any other good choices? It shouldn't be only Matlab. Frameworks on Java, R or Python are also ok.
What I am basically trying to do is to evolve automata for binary sequence prediction problem, like shown in this article
Thanks.
Consider Ragel. It has a manual and a good amount of examples; I find the documentation superior to that of AT&T Research's FSM Tools (which consisted of a couple manpages and sparse examples).