Slicing using np.array but getting IndexError - numpy

I've been getting IndexError: too many indices for array at the first line of the squares.append and the other posts on IndexError just seemed a little too confusing, so it would be great if there can be a simple explanation on why I'm getting this!
def check_squares(grid):
squares=[]
count_dic={}
count_dic[0]=0
for num in range(1,10):
count_dic[num]=0
squares.append(list(((np.array(grid)[:3,:3]).reshape(-1))))
squares.append(list(((np.array(grid)[:3,3:6]).reshape(-1))))
squares.append(list(((np.array(grid)[:3,6:9]).reshape(-1))))
squares.append(list(((np.array(grid)[3:6,:3]).reshape(-1))))
squares.append(list(((np.array(grid)[3:6,3:6]).reshape(-1))))
squares.append(list(((np.array(grid)[3:6,6:9]).reshape(-1))))
squares.append(list(((np.array(grid)[6:9,:3]).reshape(-1))))
squares.append(list(((np.array(grid)[6:9,3:6]).reshape(-1))))
squares.append(list(((np.array(grid)[6:9,6:9]).reshape(-1))))
for lst in squares:
for i in lst:
count_dic[i]+=1
count_dic[0]=0
if (all(value <=1 for value in count_dic.values()))==True:
for num in range(1,10):
count_dic[num]=0
else:
return False
return True
ill_formed = [[5,3,4,6,7,8,9,1,2],
[6,7,2,1,9,5,3,4,8],
[1,9,8,3,4,2,5,6,7],
[8,5,9,7,6,1,4,2,3],
[4,2,6,8,5,3,7,9], # <---
[7,1,3,9,2,4,8,5,6],
[9,6,1,5,3,7,2,8,4],
[2,8,7,4,1,9,6,3,5],
[3,4,5,2,8,6,1,7,9]]
valid = [[5,3,4,6,7,8,9,1,2],
[6,7,2,1,9,5,3,4,8],
[1,9,8,3,4,2,5,6,7],
[8,5,9,7,6,1,4,2,3],
[4,2,6,8,5,3,7,9,1],
[7,1,3,9,2,4,8,5,6],
[9,6,1,5,3,7,2,8,4],
[2,8,7,4,1,9,6,3,5],
[3,4,5,2,8,6,1,7,9]]
print(check_squares(valid))
print (check_squares(ill-formed))
Error message: in check_squares
squares.append(list(((np.array(grid)[:3,:3]).reshape(-1))))
IndexError: too many indices for array
traceback.print_stack()
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 245, in <module>
main()
File "C:\ProgramData\Anaconda3\lib\site-packages\spyder\utils\ipython\start_kernel.py", line 241, in main
kernel.start()
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\ioloop.py", line 888, in start
handler_func(fd_obj, events)
File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "C:\ProgramData\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\ProgramData\Anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2698, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2808, in run_ast_nodes
if self.run_code(code, result):
File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-9-e4a4d877ed6a>", line 1, in <module>
traceback.print_stack()
Really appreciate any help, thanks!

Here's my solution - you can try improving upon it.
def check_squares(grid):
grid = np.array(grid)
for i in grid:
unique , counts = (np.unique(i, return_counts=True))
#print(unique, counts)
if len(counts)<9:
return(False)
for i in np.split(grid,3):
for t in (np.hsplit(i,3)):
unique1 , counts1 = np.unique(t, return_counts=True)
#print(unique1,counts1)
if len(counts1)<9:
return(False)
return (True)
Learn about numpy array splits and slicing. Do not use array reshape half a dozen times to obtain your 3*3 sub-array. I have used np split and np.hsplit
Perform all your matrix operations in the numpy space.
you can use np.unique with return counts set as True to obtain how many unique numbers are present in your input and how many times this has occurred. You can use this obtain to identify if your sub-array has repeating characters.
Suggestions - currently you are not checking if your input is valid -eg: if your input has 12 in the sudoku grid , above code does not handle it.
you were also not checking if your rows and columns are valid sudoku columns. I have handled the row situation - i'll leave the job of checking if each column is a valid sudoku column upto you
Check it out. Happy learning!

Related

RASA init error : tensorflow.python.framework.errors_impl.InvalidArgumentError: assertion failed: [0] [Op:Assert] name: EagerVariableNameReuse

I am new to rasa . I installed rasa 2.4.1 in my windows 10, python 3.7.6 machine without any error . But when I initialise rasa project I get following error . I tried with multiple rasa2.x versions and multiple tensorflow installations . But no luck . Any help to resolve this issue is appreciated .
File "D:\NLP\rasa_env\Scripts\rasa.exe\__main__.py", line 7, in <module>
File "d:\nlp\rasa_env\lib\site-packages\rasa\__main__.py", line 116, in main
cmdline_arguments.func(cmdline_arguments)
File "d:\nlp\rasa_env\lib\site-packages\rasa\cli\scaffold.py", line 234, in run
init_project(args, path)
File "d:\nlp\rasa_env\lib\site-packages\rasa\cli\scaffold.py", line 129, in init_project
print_train_or_instructions(args, path)
File "d:\nlp\rasa_env\lib\site-packages\rasa\cli\scaffold.py", line 68, in print_train_or_instructions
training_result = rasa.train(domain, config, training_files, output)
File "d:\nlp\rasa_env\lib\site-packages\rasa\train.py", line 109, in train
loop,
File "d:\nlp\rasa_env\lib\site-packages\rasa\utils\common.py", line 308, in run_in_loop
result = loop.run_until_complete(f)
File "c:\users\kni9kor\anaconda3\lib\asyncio\base_events.py", line 583, in run_until_complete
return future.result()
File "d:\nlp\rasa_env\lib\site-packages\rasa\train.py", line 174, in train_async
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "d:\nlp\rasa_env\lib\site-packages\rasa\train.py", line 353, in _train_async_internal
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "d:\nlp\rasa_env\lib\site-packages\rasa\train.py", line 396, in _do_training
finetuning_epoch_fraction=finetuning_epoch_fraction,
File "d:\nlp\rasa_env\lib\site-packages\rasa\train.py", line 818, in _train_nlu_with_validated_data
**additional_arguments,
File "d:\nlp\rasa_env\lib\site-packages\rasa\nlu\train.py", line 116, in train
interpreter = trainer.train(training_data, **kwargs)
File "d:\nlp\rasa_env\lib\site-packages\rasa\nlu\model.py", line 209, in train
updates = component.train(working_data, self.config, **context)
File "d:\nlp\rasa_env\lib\site-packages\rasa\nlu\classifiers\diet_classifier.py", line 810, in train
self.model = self._instantiate_model_class(model_data)
File "d:\nlp\rasa_env\lib\site-packages\rasa\nlu\classifiers\diet_classifier.py", line 1132, in _instantiate_model_class
config=self.component_config,
File "d:\nlp\rasa_env\lib\site-packages\rasa\nlu\classifiers\diet_classifier.py", line 1146, in __init__
super().__init__("DIET", config, data_signature, label_data)
File "d:\nlp\rasa_env\lib\site-packages\rasa\utils\tensorflow\models.py", line 705, in __init__
checkpoint_model=config[CHECKPOINT_MODEL],
File "d:\nlp\rasa_env\lib\site-packages\rasa\utils\tensorflow\models.py", line 91, in __init__
super().__init__(**kwargs)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\training\tracking\base.py", line 457, in _method_wrapper
result = method(self, *args, **kwargs)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\keras\engine\training.py", line 308, in __init__
self._init_batch_counters()
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\training\tracking\base.py", line 457, in _method_wrapper
result = method(self, *args, **kwargs)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\keras\engine\training.py", line 317, in _init_batch_counters
self._train_counter = variables.Variable(0, dtype='int64', aggregation=agg)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\variables.py", line 262, in __call__
return cls._variable_v2_call(*args, **kwargs)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\variables.py", line 256, in _variable_v2_call
shape=shape)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\variables.py", line 237, in <lambda>
previous_getter = lambda **kws: default_variable_creator_v2(None, **kws)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\variable_scope.py", line 2646, in default_variable_creator_v2
shape=shape)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\variables.py", line 264, in __call__
return super(VariableMetaclass, cls).__call__(*args, **kwargs)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 1518, in __init__
distribute_strategy=distribute_strategy)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 1666, in _init_from_args
graph_mode=self._in_graph_mode)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 243, in eager_safe_variable_handle
shape, dtype, shared_name, name, graph_mode, initial_value)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py", line 175, in _variable_handle_from_shape_and_dtype
math_ops.logical_not(exists), [exists], name="EagerVariableNameReuse")
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\ops\gen_logging_ops.py", line 49, in _assert
_ops.raise_from_not_ok_status(e, name)
File "d:\nlp\rasa_env\lib\site-packages\tensorflow\python\framework\ops.py", line 6843, in raise_from_not_ok_status
six.raise_from(core._status_to_exception(e.code, message), None)
File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.InvalidArgumentError: assertion failed: [0] [Op:Assert] name: EagerVariableNameReuse
Possible Solutions:
1.Kill Concurrent python programs (like Jupyter notebooks) that is trying to access Tensorflow simultaneously.
2.Setting the environment variable TF_FORCE_GPU_ALLOW_GROWTH to true seems to make this issue disapper:
import os
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = "true"
I have also attached following similar issues for reference which might help you out. link1 , link2, link3

Odoo Error when installing module KeyError

I am getting the following error when installing a module, I could use some help. How can I fix it?
I am working with odoo v12
Odoo Server Error
Traceback (most recent call last):
File "/home/ernesto/odoo12/odoo/http.py", line 656, in _handle_exception
return super(JsonRequest, self)._handle_exception(exception)
File "/home/ernesto/odoo12/odoo/http.py", line 314, in _handle_exception
raise pycompat.reraise(type(exception), exception, sys.exc_info()[2])
File "/home/ernesto/odoo12/odoo/tools/pycompat.py", line 87, in reraise
raise value
File "/home/ernesto/odoo12/odoo/http.py", line 698, in dispatch
result = self._call_function(**self.params)
File "/home/ernesto/odoo12/odoo/http.py", line 346, in _call_function
return checked_call(self.db, *args, **kwargs)
File "/home/ernesto/odoo12/odoo/service/model.py", line 98, in wrapper
return f(dbname, *args, **kwargs)
File "/home/ernesto/odoo12/odoo/http.py", line 339, in checked_call
result = self.endpoint(*a, **kw)
File "/home/ernesto/odoo12/odoo/http.py", line 941, in __call__
return self.method(*args, **kw)
File "/home/ernesto/odoo12/odoo/http.py", line 519, in response_wrap
response = f(*args, **kw)
File "/home/ernesto/odoo12/addons/web/controllers/main.py", line 966, in call_button
action = self._call_kw(model, method, args, {})
File "/home/ernesto/odoo12/addons/web/controllers/main.py", line 954, in _call_kw
return call_kw(request.env[model], method, args, kwargs)
File "/home/ernesto/odoo12/odoo/api.py", line 759, in call_kw
return _call_kw_multi(method, model, args, kwargs)
File "/home/ernesto/odoo12/odoo/api.py", line 746, in _call_kw_multi
result = method(recs, *args, **kwargs)
File "<decorator-gen-61>", line 2, in button_immediate_install
File "/home/ernesto/odoo12/odoo/addons/base/models/ir_module.py", line 74, in check_and_log
return method(self, *args, **kwargs)
File "/home/ernesto/odoo12/odoo/addons/base/models/ir_module.py", line 445, in button_immediate_install
return self._button_immediate_function(type(self).button_install)
File "/home/ernesto/odoo12/odoo/addons/base/models/ir_module.py", line 561, in _button_immediate_function
modules.registry.Registry.new(self._cr.dbname, update_module=True)
File "/home/ernesto/odoo12/odoo/modules/registry.py", line 86, in new
odoo.modules.load_modules(registry._db, force_demo, status, update_module)
File "/home/ernesto/odoo12/odoo/modules/loading.py", line 421, in load_modules
loaded_modules, update_module, models_to_check)
File "/home/ernesto/odoo12/odoo/modules/loading.py", line 313, in load_marked_modules
perform_checks=perform_checks, models_to_check=models_to_check
File "/home/ernesto/odoo12/odoo/modules/loading.py", line 222, in load_module_graph
load_data(cr, idref, mode, kind='data', package=package, report=report)
File "/home/ernesto/odoo12/odoo/modules/loading.py", line 68, in load_data
tools.convert_file(cr, package.name, filename, idref, mode, noupdate, kind, report)
File "/home/ernesto/odoo12/odoo/tools/convert.py", line 798, in convert_file
convert_csv_import(cr, module, pathname, fp.read(), idref, mode, noupdate)
File "/home/ernesto/odoo12/odoo/tools/convert.py", line 841, in convert_csv_import
result = env[model].load(fields, datas)
File "/home/ernesto/odoo12/odoo/models.py", line 943, in load
for id, xid, record, info in converted:
File "/home/ernesto/odoo12/odoo/models.py", line 1068, in _convert_records
for record, extras in stream:
File "/home/ernesto/odoo12/odoo/tools/misc.py", line 859, in next
val = next(self.stream, _ph)
File "/home/ernesto/odoo12/odoo/models.py", line 991, in _extract_records
for index, fnames in enumerate(fields_)
File "/home/ernesto/odoo12/odoo/models.py", line 992, in <listcomp>
if fields[fnames[0]].type == 'one2many'
KeyError: 'id
I am getting the following error when installing a module, I could use some help. How can I fix it?
I am working with odoo v12
The error occurs when Odoo tries to import a CSV file.
Check the CSV files listed in the data section of the manifest file.
Maybe there is an apostrophe or blank spaces just before the id field name. You can reproduce a similar error using the following CSV file:
'id,name,model_id:id,group_id:id,perm_read,perm_write,perm_create,perm_unlink
access_product_product_account_user,product.product.account.user,product.model_product_product,group_account_user,1,0,0,0

Access dataframe with multi-level index on pandas v1.0.3

I'm trying to access a row of the dataframe dtSortedTable by
dtSortedTable.loc[decisionCountSorted.index[0]]
dtSortedTable is
X0 X1 X2
(D1, G2) A B C
(D2, G1) A A A
(D2, G0) A A C
decisionCountSorted indexes look like:
Index([('D1', 'G2'), ('D2', 'G1'), ('D2', 'G0')], dtype='object')
The indexes of decisionCountSorted are exactly the same as dtSortedTable. The indexes are multilevel with 2 levels. Why am I getting the below error? I need to run some tests on decisionCountSorted and extract the corresponding rows from dtSortedTable. Any help would be hugely appreciated!
Traceback (most recent call last):
File "/usr/local/Caskroom/miniconda/base/envs/logicsim/lib/python3.8/site-packages/pandas/core/indexes/base.py", line 2646, in get_loc
return self._engine.get_loc(key)
File "pandas/_libs/index.pyx", line 111, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/index.pyx", line 138, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/hashtable_class_helper.pxi", line 1619, in pandas._libs.hashtable.PyObjectHashTable.get_item
File "pandas/_libs/hashtable_class_helper.pxi", line 1627, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: 'D1'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/Users/tkazi/Documents/Code/logicsim/logic.py", line 183, in <module>
dtFixed = dtConsensus(dtSortedTable,quorumCount)
File "/Users/tkazi/Documents/Code/logicsim/logic.py", line 119, in dtConsensus
print(dtSortedTable.loc[decisionCountSorted.index[0]])
File "/usr/local/Caskroom/miniconda/base/envs/logicsim/lib/python3.8/site-packages/pandas/core/indexing.py", line 1762, in __getitem__
return self._getitem_tuple(key)
File "/usr/local/Caskroom/miniconda/base/envs/logicsim/lib/python3.8/site-packages/pandas/core/indexing.py", line 1272, in _getitem_tuple
return self._getitem_lowerdim(tup)
File "/usr/local/Caskroom/miniconda/base/envs/logicsim/lib/python3.8/site-packages/pandas/core/indexing.py", line 1389, in _getitem_lowerdim
section = self._getitem_axis(key, axis=i)
File "/usr/local/Caskroom/miniconda/base/envs/logicsim/lib/python3.8/site-packages/pandas/core/indexing.py", line 1965, in _getitem_axis
return self._get_label(key, axis=axis)
File "/usr/local/Caskroom/miniconda/base/envs/logicsim/lib/python3.8/site-packages/pandas/core/indexing.py", line 625, in _get_label
return self.obj._xs(label, axis=axis)
File "/usr/local/Caskroom/miniconda/base/envs/logicsim/lib/python3.8/site-packages/pandas/core/generic.py", line 3537, in xs
loc = self.index.get_loc(key)
File "/usr/local/Caskroom/miniconda/base/envs/logicsim/lib/python3.8/site-packages/pandas/core/indexes/base.py", line 2648, in get_loc
return self._engine.get_loc(self._maybe_cast_indexer(key))
File "pandas/_libs/index.pyx", line 111, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/index.pyx", line 138, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/hashtable_class_helper.pxi", line 1619, in pandas._libs.hashtable.PyObjectHashTable.get_item
File "pandas/_libs/hashtable_class_helper.pxi", line 1627, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: 'D1'

AttributeError: 'S3File' object has not attribute 'getvalue', while running to_csv

I'm running to_csv command as follows to an ouput file on a s3 bucket with ServerSideEncryption enabled:
to_csv("s3://mys3bucket/result.csv",
storage_option={'s3_additional_kwargs':
{'ServerSideEncryption': 'AES256'}})
I'm getting the following attribute error:
File "/usr/lib/python2.7/site-packages/dask/dataframe/core.py", line 1091, in to_csv
return to_csv(self, filename, **kwargs)
File "/usr/lib/python2.7/site-packages/dask/dataframe/io/csv.py", line 577, in to_csv
delayed(values).compute(get=get, scheduler=scheduler)
File "/usr/lib/python2.7/site-packages/dask/base.py", line 156, in compute
(result,) = compute(self, traverse=False, **kwargs)
File "/usr/lib/python2.7/site-packages/dask/base.py", line 400, in compute
results = schedule(dsk, keys, **kwargs)
File "/usr/lib/python2.7/site-packages/distributed/client.py", line 2159, in get
direct=direct)
File "/usr/lib/python2.7/site-packages/distributed/client.py", line 1562, in gather
asynchronous=asynchronous)
File "/usr/lib/python2.7/site-packages/distributed/client.py", line 652, in sync
return sync(self.loop, func, *args, **kwargs)
File "/usr/lib/python2.7/site-packages/distributed/utils.py", line 275, in sync
six.reraise(*error[0])
File "/usr/lib/python2.7/site-packages/distributed/utils.py", line 260, in f
result[0] = yield make_coro()
File "/usr/lib64/python2.7/site-packages/tornado/gen.py", line 1099, in run
value = future.result()
File "/usr/lib64/python2.7/site-packages/tornado/concurrent.py", line 260, in result
raise_exc_info(self._exc_info)
File "/usr/lib64/python2.7/site-packages/tornado/gen.py", line 1107, in run
yielded = self.gen.throw(*exc_info)
File "/usr/lib/python2.7/site-packages/distributed/client.py", line 1439, in _gather
traceback)
File "/usr/lib/python2.7/site-packages/dask/dataframe/io/csv.py", line 439, in _to_csv_chunk
df.to_csv(f, **kwargs)
File "/usr/lib64/python2.7/site-packages/pandas/core/frame.py", line 1745, in to_csv
formatter.save()
File "/usr/lib64/python2.7/site-packages/pandas/io/formats/csvs.py", line 161, in save
buf = f.getvalue()
File "/usr/lib/python2.7/site-packages/dask/bytes/utils.py", line 136, in __getattr__
return getattr(self.file, key)
AttributeError: 'S3File' object has no attribute 'getvalue'
I searched for this error, but couldn't find a relevant solution.
Do you have any idea?

tensorflow tutorial mnist_with_summary throws TypeError

I am running the mnist_with_summary tutorial to see how the TensorBoard works. It throws a TypeError right away.
Extracting /tmp/data/train-images-idx3-ubyte.gz
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
Traceback (most recent call last):
File "/Users/bruceho/workspace/TestTensorflow/mysrc/examples/tutorials/mnist/mnist_with_summaries.py", line 166, in <module>
tf.app.run()
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/platform/app.py", line 30, in run
sys.exit(main(sys.argv[:1] + flags_passthrough))
File "/Users/bruceho/workspace/TestTensorflow/mysrc/examples/tutorials/mnist/mnist_with_summaries.py", line 163, in main
train()
File "/Users/bruceho/workspace/TestTensorflow/mysrc/examples/tutorials/mnist/mnist_with_summaries.py", line 110, in train
y = nn_layer(dropped, 500, 10, 'layer2', act=tf.nn.softmax)
File "/Users/bruceho/workspace/TestTensorflow/mysrc/examples/tutorials/mnist/mnist_with_summaries.py", line 104, in nn_layer
activations = act(preactivate, 'activation')
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/ops/nn_ops.py", line 582, in softmax
return _softmax(logits, gen_nn_ops._softmax, dim, name)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/ops/nn_ops.py", line 542, in _softmax
logits = _swap_axis(logits, dim, math_ops.sub(input_rank, 1))
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/ops/nn_ops.py", line 518, in _swap_axis
0, [math_ops.range(dim_index), [last_index],
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/ops/math_ops.py", line 991, in range
return gen_math_ops._range(start, limit, delta, name=name)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/ops/gen_math_ops.py", line 1675, in _range
delta=delta, name=name)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/framework/op_def_library.py", line 490, in apply_op
preferred_dtype=default_dtype)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/framework/ops.py", line 657, in convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/framework/constant_op.py", line 180, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/framework/constant_op.py", line 163, in constant
tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape))
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/framework/tensor_util.py", line 353, in make_tensor_proto
_AssertCompatible(values, dtype)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/tensorflow/python/framework/tensor_util.py", line 290, in _AssertCompatible
(dtype.name, repr(mismatch), type(mismatch).__name__))
TypeError: Expected int32, got 'activation' of type 'str' instead.
I tried running from inside eclipse and command line with the same results. Any one experience the same problem?
I think you must have modified the original code somehow. Your problem lies in this line:activations = act(preactivate, 'activation'). So if you check the api of tf.nn.softmax, you would find that the second argument represents dim instead of name. So to fix the problem, just change this line into:activations = act(preactivate, name='activation')
Besides, I don't know if you have changed
diff = tf.nn.softmax_cross_entropy_with_logits(y, y_)
If not, you probably have softmax the output twice.