I have a bunch of data and I want the output to display an average of all the data points but also the individual data points in subsequent columns. Ideally it would look something like this:
Compound | Subject | Avg datapoint | Datapoint Experiment 1 | Datapoint Exp 2 | ...
..........XYZ......|.....ABC....|............40...............|...............20..............................|...............60...............|......
..........TUV......|.....ABC....|............30...............|...............20..............................|...............40...............|......
..........TUV......|.....DEF....|............20...............|...............10..............................|...............30...............|......
One problem I'm running in to is that I get repetitive lines of information. Another is that I have some rows pulling in info that doesn't apply, such that some of the individual datapoints in, say, row 2 would have info from subject DEF when I only want it to have info from subject ABC.
I hope this makes sense! I'm currently using inner join with a ton of where qualifiers. I'm close but not quite there. Any help is appreciate and let me know if I can provide additional info to help you help me.
The SQL language has a very strict rule requiring you to know the exact number of columns for your result set in advance, before looking at any data in your tables.
Therefore, if this average is based off a known fixed number of columns, or if the number of potential columns is reasonably small, where you can manually setup placeholders, then this will be possible. The key search terms to learn how to do this is "conditional aggregation", where you may also need to join the table to itself for each field.
Otherwise, you will need to pivot and aggregate your data in your client code or reporting tool.
I am trying to build an automatic feature for a database that takes NOAA weather data and imports it into our own database tables.
Currently we have 3 steps:
1. Import the data literally into its own table to preserve the original data
2. Copy it's data into a table that better represents our own data in structure
3. Then convert that table into our own data
The problem I am having stems from the data that NOAA gives us. It comes in the following format:
Station Station_Name Elevation Latitude Longitude Date MXPN Measurement_Flag Quality_Flag Source_Flag Time_Of_Observation ...
Starting with MXPN (Maximum temperature for water in a pan) which for example is comprised of it's column and the 4 other columns after it, it repeats that same 5 columns for each form of weather observation. The problem though is that if a particular type of weather was not observed in any of the stations reported, that set of 5 columns will be completely omitted.
For example if you look at Central Florida stations, you will find no SNOW (Snowfall measured in mm). However, if you look at stations in New Jersey, you will find this column as they report snowfall. This means a 1:1 mapping of columns is not possible between different reports, and the order of columns may not be guaranteed.
Even worse, some of the weather types include wild cards in their definition, e.g. SN*# where * is a number from 0-8 representing the type of ground, and # is a number 1-7 representing the depth at which soil temperature was taken for the minimum soil temperature, and we'd like to collect these together.
All of these are column headers, and my instinct is to build a small Java program to map these properly to our data set as we'd like it. However, my superior believes it may be possible to have the database do this on a mass import, but he does not know how to do it.
Is there a way to do this as a mass import, or is it best for me to just write the Java program to convert the data to our format?
Systems in use:
MariaDB for the database.
Centos7 for the operating system (if it really becomes an issue)
Java is being done with JPA and Spring Boot, with hibernate where necessary.
You are creating a new table per each file.
I presume that the first 6 fields are always present, and that you have 0 or more occurrences of the next 5 fields. if you are using SQL Server i would approach it as follows,
Query the information_schema catalog to get a count of the fields in
the table. If the count= 6 then no observations are present, if 11
columns ,then you have 1 observation, if 17 then you have 2
observations, etc.
Now that you know the number of observations you can write some SQL
that will loop the over the observations and insert them into a
child table with a link back to a parent table which has the 1st 6
fields.
apologies if my assumptions are way off.
-HTH
I have two CSV files, the first like so:
Book1:
ID,TITLE,SUBJECT
0001,BLAH,OIL
0002,BLAH,HAMSTER
0003,BLAH,HAMSTER
0004,BLAH,PLANETS
0005,BLAH,JELLO
0006,BLAH,OIL
0007,BLAH,HAMSTER
0008,BLAH,JELLO
0009,BLAH,JELLO
0010,BLAH,HAMSTER
0011,BLAH,OIL
0012,BLAH,OIL
0013,BLAH,OIL
0014,BLAH,JELLO
0015,BLAH,JELLO
0016,BLAH,HAMSTER
0017,BLAH,PLANETS
0018,BLAH,PLANETS
0019,BLAH,HAMSTER
0020,BLAH,HAMSTER
And then a second CSV with items associated with the first list, with ID being the common attribute between the two.
Book2:
ID,ITEM
0001,PURSE
0001,STEAM
0001,SEASHELL
0002,TRUMPET
0002,TRAMPOLINE
0003,PURSE
0003,DOLPHIN
0003,ENVELOPE
0004,SEASHELL
0004,SERPENT
0004,TRUMPET
0005,CAR
0005,NOODLE
0006,CANNONBALL
0006,NOODLE
0006,ORANGE
0006,SEASHELL
0007,CREAM
0007,CANNONBALL
0007,GUM
0008,SERPENT
0008,NOODLE
0008,CAR
0009,CANNONBALL
0009,SERPENT
0009,GRAPE
0010,SERPENT
0010,CAR
0010,TAPE
0011,CANNONBALL
0011,GRAPE
0012,ORANGE
0012,GUM
0012,SEASHELL
0013,NOODLE
0013,CAR
0014,STICK
0014,ORANGE
0015,GUN
0015,GRAPE
0015,STICK
0016,BASEBALL
0016,SEASHELL
0017,CANNONBALL
0017,ORANGE
0017,TRUMPET
0018,GUM
0018,STICK
0018,GRAPE
0018,CAR
0019,CANNONBALL
0019,TRUMPET
0019,ORANGE
0020,TRUMPET
0020,CHERRY
0020,ORANGE
0020,GUM
The real datasets are millions of records, so I'm sorry in advance for my simple example.
The problem I need to solve is getting the data merged and collated in a way where I can see which item groupings most commonly appear together on the same ID. (e.g. GRAPE,GUM,SEASHELL appear together 340 times, ORANGE and STICK 89 times, etc...)
Then I need to see if there is any change/deviation to the general results in common appearance when grouped by SUBJECT.
Tools I'm familiar with are Excel and SQL, but I also have PowerBI and Alteryx at my disposal.
Full disclosure: Not homework, or work, but a volunteer project, thus my unfamiliarity with this kind of data manipulation.
Thanks in advance.
An Alteryx solution:
Drag the two .csv files onto your canvas (seen as book1.csv and book2.csv in my picture; Alteryx will create "Input" tools for you.
Drag a "Join" tool on and connect the two .csv files to its inputs; select "ID" as the join field; unselect the "Right_ID" as output since it's merely a duplicate of "ID"
Drag a "Summary" tool on and connect the Join tool's output to the Summary tool's input; select all three of the outputs and add as a "group by"... then add the ID column with a "count"
Drag a browse tool on and connect the summary's output to the browse tool's input.
run the workflow
After all that, click on the browse tool and you should see what is seen in my screenshot: (which is showing just the first ten rows of output):
+1 for taking on a volunteer project - I think anyone who knows data can have a big impact in support of their favourite group or cause.
I would just pull the 2 files into Power BI as 2 separate tables (Get Data / From File). Create a relationship between the 2 tables based on ID (it might get auto-generated). It should be one to many.
Then I would add a Calculated Column to the Book1 table to Concatenate the related ITEM values, eg.
Items =
CALCULATE (
CONCATENATEX (
DISTINCT ( 'Book2'[ITEM] ),
'Book2'[ITEM],
", ",
'Book2'[ITEM], ASC
)
)
Now you can use that Items field in visuals (e.g. a Table), along with Count of ID to get the frequency.
Adding Subject to a copy of the table (e.g. to the Columns well of a Matrix) will produce your grouped scenario, or you could add a Subject Slicer.
As you will be comparing subsets of varying size, I would change Count of ID to Show value as - % of grand total.
Little different solution using Alteryx.
With this dataset, there are very few repeating 3 or 4 item groups. You can do the two item affinity analysis and get a probability of 3 or 4 item groups, or you can count the 3 and 4 item groups individually. I believe what you want is the latter as your probability of getting grapes with oranges may be altered by whether you have bananas in the cart or not.
Anyway, I did not join in the subject until after finding all of my combinations. I found all the combinations by taking the Cartesian join of two, then three, then four of the original set. I then removed all duplicates by ensuring items were always in alphabetical order in each row. I then counted occurrences of each combination. More joins can be added in the same pattern to count groups of 5,6,7...
Once you have the counts of occurrences, then I would join back with the subjects and perform this analysis on each group and compare to the overall results.
I'm supposed to disclose that I work for Alteryx.
first of all if you are using windows
just navigate to the directory which contains the CSV and write the following command:
copy pattern newfileName.csv
#example
copy *.csv merged.csv
now you created one csv file, the file is too large now you can't process it once, depending on your programming language you can use appropriate way, for python you can use generators to process line by line, or pandas you can read chunk by chunk it will be easy.
I hope this help you.
I have this situation, 2 files.
Input file 2 fields 6 rows:
1|BANANA ON CAGES
2|APPLE CHIPS
3|SPORT CARS
4|PLANES
5|HOUSE
6|BOTTLES
List file 2 fields 4 rows
BANANA|FRUIT
APPLE|FRUIT
CAR|TRANSPORT
PLANE|TRANSPORT
And I wish this result:
Output file 3 fields 6 rows
1|BANANA ON CAGES|FRUIT
2|APPLE CHIPS|FRUIT
3|SPORT CARS|TRANSPORT
4|PLANES|TRANSPORT
5|HOUSE
6|BOTTLES
Is mandatory for me to use PDI.
Join files (Cartesian Product) is too slow.
Input file is around 1,000,000 rows and list file around 300,000 rows
Does your List file need to be dynamic or the content is reasonably static?
If static, you can try String Replace with RegEx. Something like:
After setting the category you would just need to filter where category != from the item description.
Don't know how it will perform with so many records though. Just used this step with few records until now.
EDIT: I've just seen that Join (Cartesian) has REGEXP option. Maybe it's faster than CONTAINS (which I think you've been using?). That would by far be better to set up.
Good luck!
I have few tables as shown below
Polls
PollId Question Option
1 What 1
2 Why 4
Updates
UpdateId Text
1 Sleep
2 Play
Polls and updates are just two sample tables (In reality there are more tables like ,photos, videos,links etc). But when a user visit his home (like facebook new feed) he must be displayed with data relevant to him (no such data included in this example). ie I want to select data from all tables with less number of query executions. (ie, I want to present a mixture of datas, ie polls, photos, videos etc )
Currently, I'm fetching only ids and type (ie which table) from all of the tables and gather further data while iterating through this resultset. (ie from c# calling another SqlQuery) .
Is there a way to query the data from whole tables at once? (OUTER JOIN?, UNION?)
Or simply,
How can I select different type of entities at once in a single sql Query?
You could write your query so that you have one long select list for everything you want and it all comes back in one result set but I suspect that wouldn't work too well because you might have varying numbers of different types of items per user.
If you really must have it all in one hit then you can issue multiple queries in one go and get multiple result sets back. To handle this you can use an ADO.Net DataSet. See this SO example (but not the accepted answer - see Vikram Dibyal's answer as that gives a very basic overview of what I think you're asking for).
I won't copy and paste the stuff from the linked thread, just head over and take a look.