I'm trying to convert (shift) the values of every pixel in an HSV image (taken from a frame of a video).
The idea is to invert yellow and red colours into blue colour (to avoid using three threshold later in the program, when I can use just one) by inverting the red and yellow values into blue values using following equation.
(Hue + 90) % 180 (in OpenCV 3 Hue is in range [0,180])
Here's what I came up with:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV);
H = hsv[:,:,0]
mask= [H<75 and H>128]
print("orig",hsv[mask])
hsv[mask] = ((hsv[mask]+90) % 180)
Unfortunately It doesn't work as by this approach Im selecting the whole hue channel not its pixel values
There's two different possibilities here, and I'm not sure which you want, but they're both trivial to implement. You can invert (reverse may be a better word) the hue rainbow, which you can just do by using 180 - hue. Or you can shift the color by 180 degrees by using (hue + 90) % 180 like you mention.
Reversing the colors:
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
rev_h = 180 - h
rev_hsv = cv2.merge([rev_h, s, v])
rev_img = cv2.cvtColor(rev_hsv, cv2.COLOR_HSV2BGR)
Shifting the colors:
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
shift_h = (h + 90) % 180
shift_hsv = cv2.merge([shift_h, s, v])
shift_img = cv2.cvtColor(shift_hsv, cv2.COLOR_HSV2BGR)
Those are the idiomatic ways to do it in OpenCV.
Now you want to do the same thing as above but only for some masked subset of pixels that meet a condition. This is not too hard to do; if you want to shift some masked pixels:
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
h_mask = (h < 75) | (h > 128)
h[h_mask] = (h[h_mask] + 90) % 180
shift_hsv = cv2.merge([h, s, v])
shift_img = cv2.cvtColor(shift_hsv, cv2.COLOR_HSV2BGR)
Hue channel is uint8 type, value range is [0, 179]. Therefore, when add with a large number or a negative number, Python returns a garbage number. Here is my solution base on #alkasm color shifting code:
img_hsv = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(img_hsv)
shift_h = random.randint(-50, 50)
h = ((h.astype('int16') + shift_h) % 180).astype('uint8')
shift_hsv = cv2.merge([h, s, v])
For random hue, saturation, and value shifting. Shift channel base on #bill-grates:
def shift_channel(c, amount):
if amount > 0:
lim = 255 - amount
c[c >= lim] = 255
c[c < lim] += amount
elif amount < 0:
amount = -amount
lim = amount
c[c <= lim] = 0
c[c > lim] -= amount
return c
rand_h, rand_s, rand_v = 50, 50, 50
img_hsv = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(img_hsv)
# Random shift hue
shift_h = random.randint(-rand_h, rand_h)
h = ((h.astype('int16') + shift_h) % 180).astype('uint8')
# Random shift saturation
shift_s = random.randint(-rand_s, rand_s)
s = shift_channel(s, shift_s)
# Random shift value
shift_v = random.randint(-rand_v, rand_v)
v = shift_channel(v, shift_v)
shift_hsv = cv2.merge([h, s, v])
print(shift_h, shift_s, shift_v)
img_rgb = cv2.cvtColor(shift_hsv, cv2.COLOR_HSV2RGB)
Related
I am trying to execute a while loop that holds a function with parameters. However, I have noticed that the parameters inside the while loop are not updated which leads to an infinite while loop. Is there a reason behind the fact that the function parameters are not being updated after every loop?
import shapefile
from osgeo import gdal
#import rasterio
print (gdal.VersionInfo())
def pointInRect(x, y, x1, y1, w, h): # check if a raster point is in another raster
x2, y2 = x1+w, y1+h
if (x1 < x and x < x2):
if (y1 < y and y < y2):
return True
return False
# Open the shapes centroids
shp_cntrds = 'Path to centroids'
sf_cntrds = shapefile.Reader(shp_cntrds)
shapes_cntrds = sf_cntrds.shapes()
records_cntrds = sf_cntrds.records()
# adjust labels position according to its shapes centroids position
for i in range(len(records_cntrds)):
print(i)
tods = gdal.Open(str(records_cntrds[i][1]))
width = tods.RasterXSize
height = tods.RasterYSize
tods.SetGeoTransform([shapes_cntrds[i].points[0][0] - (width * 0.005), 0.01, 0,
shapes_cntrds[i].points[0][1] + (height * 0.005), 0, -0.01])
gt = tods.GetGeoTransform()
left = gt[0]
bottom = gt[3] + width * gt[4] + height * gt[5]
right = gt[0] + width * gt[1] + height * gt[2]
top = gt[3]
srs = osr.SpatialReference()
srs.SetUTM(32, 1) # set crs
srs.SetWellKnownGeogCS('WGS84') # set crs
tods.SetProjection(srs.ExportToWkt()) # set Projection and save file
print(width, height)
tods = None
# iterate through Labels and move labels away from each others if they overlapp
for i in range(len(records_cntrds)):
tods1 = gdal.Open(str(records_cntrds[i][1])) # records of the centroid shapefile contains the raster file path
width = tods1.RasterXSize
height = tods1.RasterYSize
gt = tods1.GetGeoTransform()
left = gt[0]
bottom = gt[3] + width * gt[4] + height * gt[5]
right = gt[0] + width * gt[1] + height * gt[2]
top = gt[3]
face = [x for x in list(range(len(records_cntrds))) if x != i]
tods1 = None
for j in face:
if str(records_cntrds[i][1]) == str(records_cntrds[j][1]):
pass
else:
ds_raster_face = gdal.Open(str(records_cntrds[j][1]))
#print(str(records_cntrds[i][1]))
#print(str(records_cntrds[j][1]))
gt_face = ds_raster_face.GetGeoTransform()
width_face = ds_raster_face.RasterXSize
height_face = ds_raster_face.RasterYSize
left_face = gt_face[0]
bottom_face = gt_face[3] + width_face * gt_face[4] + height_face * gt_face[5]
right_face = gt_face[0] + width_face * gt_face[1] + height_face * gt_face[2]
top_face = gt_face[3]
width1 = width
left1 = left
height1 = height
bottom1 = bottom
while pointInRect(left_face, bottom_face, left1, bottom1, width1*0.01, height1*0.01) :
tods2 = gdal.Open(str(records_cntrds[i][1]))
gt = tods2.GetGeoTransform()
width1 = tods2.RasterXSize
height1 = tods2.RasterYSize
left1 = gt[0]
bottom1 = gt[3] + width1 * gt[4] + height1 * gt[5]
print("while executed")
tods2.SetGeoTransform([(shapes_cntrds[i].points[0][0] - (width1 * 0.005)) - 2.7, 0.01, 0,
(shapes_cntrds[i].points[0][1] + (height1 * 0.005)) - 2.8, 0, -0.01])
print("coordinates changed to",(i, left1, bottom1, width1, height1))
tods2 = None
The while loop should break when the function return false but it is repeating the same thing. Are the gt values not updatet or are they initialized again ?
I am trying to draw line projection for an image . The line 4 in the code below sy/2 represents the length of projection (here is the half image range). But how to set the starting point or ending point with scripting? For example, I want to draw the line projection, from 1/4 image range to 3/4 image range. Any suggestions?
image src := getfrontimage()
number sx,sy
src.GetSize(sx,sy)
image line_projection := RealImage( "Vertical", 4, sy/2 )
line_projection[irow,0] += src
line_projection *= 1/sx
While using intrinsic variables (icol,irow,...) for iterative summing was the fasted method in GMS 1, this is no longer true for newer versions that utilize multi-threaded code, as demonstrated by the following example:
// various ways to sum a subsection of an image
number sx = 4096, sy = 4096
number startx = 0.2, starty = 0.2
number endx = 0.8, endy = 0.4
// Coordinates of cut
number t = trunc(starty*sy), l = trunc(startx*sx), b = trunc(endy*sy), r = trunc(endx*sx)
image test := realImage( "Test", 4, sx, sy )
test = sin( icol/iwidth * 20*Pi()) + cos( itheta * iradius/iwidth * 50)
test= sin( icol/iwidth * 20*Pi())
test.ShowImage()
ROI marker = NewROI()
marker.ROISetLabel( "Section" )
marker.ROISetRectangle( t, l, b, r )
marker.ROISetVolatile( 0 )
test.ImageGetImageDisplay(0).ImageDisplayAddRoi( marker )
//OKDialog( "Performing vertical sum with various methods now." )
number h = b - t
number w = r - l
ClearResults()
number ts, te, tps = GetHighResTicksPerSecond()
// using intrinsic variables
image sumImg1 := RealImage( "Sum intrinsic", 4, w )
ts = GetHighResTickcount()
sumImg1[icol, 0] += test[t,l,b,r];
te = GetHighResTickcount()
sumImg1.ShowImage()
result("\n Summing using intrinisic variables: " + (te-ts)/tps + " sec")
// using for-loop of slice
image sumImg2 := RealImage( "Sum with slice", 4, w )
ts = GetHighResTickcount()
for( number i=0; i<h; i++)
sumImg2 += test.slice1(0,i,0, 0,w,1)
te = GetHighResTickcount()
sumImg2.ShowImage()
result("\n Summing using for-loop with slice : " + (te-ts)/tps + " sec")
// using project of slice
image sumImg3 := RealImage( "Sum with project", 4, w )
ts = GetHighResTickcount()
sumImg3 = test[t,l,b,r].project( 1 )
te = GetHighResTickcount()
sumImg3.ShowImage()
result("\n Summing using project on section : " + (te-ts)/tps + " sec")
You can use slicing to only look at the image area you are interested in. For "clipping" the source to the interesting part use img[y1, x1, y2, x2].
image src := getFrontImage();
number width, height;
src.GetSize(width, height);
number start_y = 1/4 * height;
number end_y = 3/4 * height;
image line_projection := RealImage("Vertical", 4, width);
line_projection[icol, 0] += src[start_y, 0, end_y, width];
line_projection *= 1/(height/2);
line_projection.ShowImage();
I'm trying to implement RGB to HSV conversion from opencv in pure numpy using formula from here:
def rgb2hsv_opencv(img_rgb):
img_hsv = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2HSV)
return img_hsv
def rgb2hsv_np(img_rgb):
assert img_rgb.dtype == np.float32
height, width, c = img_rgb.shape
r, g, b = img_rgb[:,:,0], img_rgb[:,:,1], img_rgb[:,:,2]
t = np.min(img_rgb, axis=-1)
v = np.max(img_rgb, axis=-1)
s = (v - t) / (v + 1e-6)
s[v==0] = 0
# v==r
hr = 60 * (g - b) / (v - t + 1e-6)
# v==g
hg = 120 + 60 * (b - r) / (v - t + 1e-6)
# v==b
hb = 240 + 60 * (r - g) / (v - t + 1e-6)
h = np.zeros((height, width), np.float32)
h = h.flatten()
hr = hr.flatten()
hg = hg.flatten()
hb = hb.flatten()
h[(v==r).flatten()] = hr[(v==r).flatten()]
h[(v==g).flatten()] = hg[(v==g).flatten()]
h[(v==b).flatten()] = hb[(v==b).flatten()]
h[h<0] += 360
h = h.reshape((height, width))
img_hsv = np.stack([h, s, v], axis=-1)
return img_hsv
img_bgr = cv2.imread('00000.png')
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
img_rgb = img_rgb / 255.0
img_rgb = img_rgb.astype(np.float32)
img_hsv1 = rgb2hsv_np(img_rgb)
img_hsv2 = rgb2hsv_opencv(img_rgb)
print('max diff:', np.max(np.fabs(img_hsv1 - img_hsv2)))
print('min diff:', np.min(np.fabs(img_hsv1 - img_hsv2)))
print('mean diff:', np.mean(np.fabs(img_hsv1 - img_hsv2)))
But I get big diff:
max diff: 240.0
min diff: 0.0
mean diff: 0.18085355
Do I missing something?
Also maybe it's possible to write numpy code more efficient, for example without flatten?
Also I have hard time finding original C++ code for cvtColor function, as I understand it should be actually function cvCvtColor from C code, but I can't find actual source code with formula.
From the fact that the max difference is exactly 240, I'm pretty sure that what's happening is in the case when both or either of v==r, v==g are simultaneously true alongside v==b, which gets executed last.
If you change the order from:
h[(v==r).flatten()] = hr[(v==r).flatten()]
h[(v==g).flatten()] = hg[(v==g).flatten()]
h[(v==b).flatten()] = hb[(v==b).flatten()]
To:
h[(v==r).flatten()] = hr[(v==r).flatten()]
h[(v==b).flatten()] = hb[(v==b).flatten()]
h[(v==g).flatten()] = hg[(v==g).flatten()]
The max difference may start showing up as 120, because of that added 120 in that equation. So ideally, you would want to execute these three lines in the order b->g->r. The difference should be negligible then (still noticing a max difference of 0.01~, chalking it up to some round off somewhere).
h[(v==b).flatten()] = hb[(v==b).flatten()]
h[(v==g).flatten()] = hg[(v==g).flatten()]
h[(v==r).flatten()] = hr[(v==r).flatten()]
I calculated three methods of the following with Numpy.
Avoiding the circle periodicity, I given the range is 0 to +180.
The calculation results of the three methods should match.
However, all calculation results are different.
Why is this?
degAry = []
sumDeg = 0
cosRad = 0
sinRad = 0
LEN = 300
RAD2DEG = 180.0 / PI # 57.2957795
for i in range(LEN):
deg = random.uniform(0,180)
rad = np.deg2rad(deg)
degAry.append(deg)
sumDeg += deg
cosRad += np.cos(rad)
sinRad += np.sin(rad)
print(np.arctan2( sinRad/LEN, cosRad/LEN ) * RAD2DEG) # 88.39325364335279
print(np.sum(degAry)/LEN) # 88.75448888951954
print(sumDeg/LEN) # 88.75448888951951
What makes you think that the mean angle and the angle of the mean vector should be the same? This is correct only for n = 1,2, for n = 3 degAry = [0, 90, 90] is easily verified to be a counter example: mean of the angles is 60 with tan = sqrt(3), mean vector is (1/3 2/3) corresponding to tan = 2.
EDIT
Mean of circular quantities
suggesting that the sin, cos approach is best.
Refactoring your code to use numpy exclusively. The two methods are different, however, the first two using RAD2DEG or the np.degrees yield the same results. The latter which used the sum of degrees divided by sample size differs.
It doesn't appear to be a summation issue (N=3000, sum in normal order, ascending then descending). They yield the same results
np.sum(deg) # 134364.25172174018
np.sum(np.sort(deg)) # 134364.25172174018
np.sum(np.sort(deg)[::-1]) # 134364.25172174018
I didn't carry it out with the summation for the cos and sin in radian form. I will leave that for others.
PI = np.pi
sumDeg = 0.
cosRad = 0.
sinRad = 0.
N = 30
RAD2DEG = 180.0 / PI # 57.2957795
deg = np.random.uniform(0, 90.0, N)
rad = np.deg2rad(deg)
sumDeg = np.sum(deg)
cosRad = np.sum(np.cos(rad))
sinRad = np.sum(np.sin(rad))
print(np.arctan2(sinRad/N, cosRad/N) * RAD2DEG)
print(np.degrees(np.arctan2(sinRad/N, cosRad/N)))
print(sumDeg/N)
Results for
> N = 1
> 22.746571717879792
> 22.746571717879792
> 22.746571717879792
>
> N= 30
> 48.99636699165551
> 48.99636699165551
> 49.000295118106884
>
> N = 300
> 44.39333460088003
> 44.39333460088003
> 44.44513528547155
>
> N = 3000
> 44.984167020219175
> 44.984167020219175
> 44.97574462726241
I'm trying to extract the display of a green LED display from a photo, and I found that the easiest way pre-process the photo is by masking (blacken) all pixels where the green channel isn't the brightest channel. I created an algorithm to do that, but it is very slow:
def mask_dominant(image, color):
# For example, if color == "green", then we blacken out
# all pixels where green isn't the brightest pixel
image_copy = np.copy(image)
black_pixel = np.array([0, 0, 0], dtype=np.uint8)
height, width, _ = image_copy.shape
for row in range(height):
for col in range(width):
# OpenCV stores colors in BGR
b, g, r = image_copy[row, col]
zero = False
if color == 'blue':
if b < g or b < r:
zero = True
elif color == 'green':
if g < b or g < r:
zero = True
elif color == 'red':
if r < b or r < g:
zero = True
else:
raise AssertionError("Color must be one of blue, green, or red")
if zero:
image_copy[row, col] = black_pixel
return image_copy
How to run it:
import cv2
import numpy as np
image = cv2.imread("image1.jpg")
dominant = mask_dominant(image, 'green')
The algorithm above takes 40 seconds to run on a photo, which is way too large. Is there a built-in algorithm that does the same thing or a numpy optimization that I can use?
This solution works:
def mask_dominant(image, color):
# For example, if color == Green, then it blacks out
# all pixels where green isn't the brightest pixel
b,g,r = cv2.split(image)
if color == 'green':
target = g
other1 = b
other2 = r
elif color == 'red':
target = r
other1 = g
other2 = b
elif color == 'blue':
target = b
other1 = g
other2 = r
else:
raise AssertionError("invalid color: " + color)
# Figure out which ones we need to zero & zero them
should_zero = (target < other1) | (target < other2)
g[should_zero] = 0
r[should_zero] = 0
b[should_zero] = 0
# Merge channels back
return cv2.merge((b,g,r))